

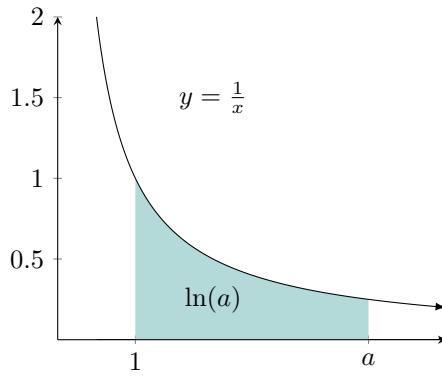
# Omega HW #5 – Logarithms

Krishanu Sankar

November 16, 2025

## Logarithms

In class, we defined the *natural logarithm* of  $a$ , for any  $a > 0$ , as the area under the curve  $y = \frac{1}{x}$  from  $x = 1$  to  $x = a$ .



We showed that  $\ln(ab) = \ln(a) + \ln(b)$  for any  $a$  and  $b$ . We then defined the logarithm base- $b$  by

$$\log_b(a) = \frac{\ln(a)}{\ln(b)}$$

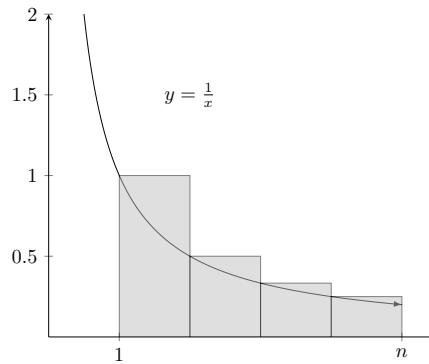
1. (1) Show the following facts, using the definition of the base- $b$  logarithm above.
  - (a)  $\log_3(81) = 4$
  - (b)  $\log_a(b) \cdot \log_b(c) = \log_a(c)$
2. (1) Calculate the following without a calculator:
  - (a)  $\log_2(56) - \log_2(7)$
  - (b)  $5^{2 \log_5(6)}$
  - (c)  $3 \log_{10}(200) - \frac{1}{2} \log_{10}(64)$
3. (2) In this question, you will be asked to describe the relationship among various logarithmic functions.
  - (a) Let  $f(x) = \ln(x)$  and  $g(x) = \ln(5x)$ . What is the relationship between these two functions? Show that  $g(x) = f(x) + C$  for some constant  $C$ . What is this constant?
  - (b) Let  $f(x) = \log_{1/8}(x)$  and  $g(x) = \log_4(x)$ . Show that  $g(x) = Cf(x)$  for some constant  $C$ . What is this constant?

4. (2) Consider the **harmonic sequence**

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Let  $H_n$  denote the sum of the first  $n$  terms, namely  $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ . We will study the size of  $H_n$  as  $n$  grows.

(a) Show that  $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} > \ln(n)$ , using the following picture.



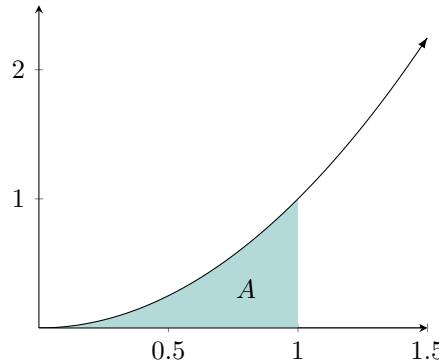
(b) Use a similar argument to show that  $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln(n)$ .  
 (c) Using the previous two parts, show that  $\ln(n+1) < H_n < \ln(n) + 1$ .  
 (d) Does the infinite sum  $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$  converge to a finite value? Why or why not?  
 (e) **(Challenge!)** Use a similar style of argument to show the following two tighter inequalities:

$$\frac{1+1/2}{2} + \frac{1/2+1/3}{2} + \frac{1/3+1/4}{2} + \dots + \frac{1/(n-1)+1/n}{2} > \ln(n)$$

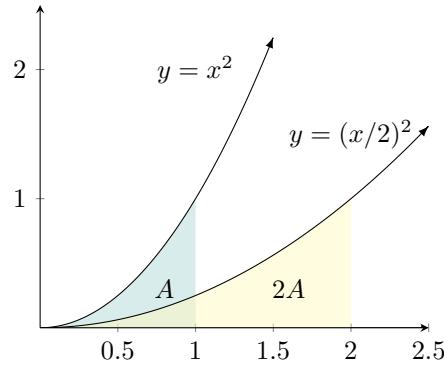
$$\frac{2}{1+2} + \frac{2}{2+3} + \frac{2}{3+4} + \dots + \frac{2}{(n-1)+n} < \ln(n)$$

## Quadrature of a Parabola

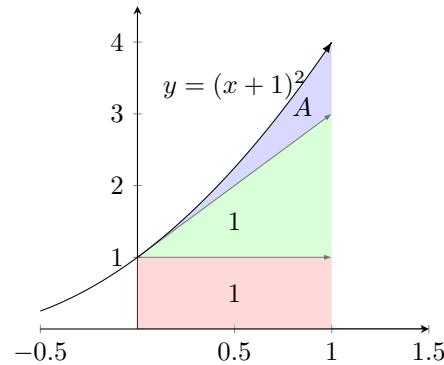
5. (2) In this problem, you'll be guided through the calculation of the area under the graph of the parabola  $y = x^2$  from  $x = 0$  to  $x = 1$ , labeled below as  $A$ .



(a) Argue geometrically that the area under the graph of  $y = (x/2)^2$  from  $x = 0$  to  $x = 2$  equals  $2A$ . Then argue geometrically that the area under the graph of  $y = x^2$  from  $x = 0$  to  $x = 2$  equals  $8A$ .



(b) Shift the graph to the left by 1 to get  $y = (x + 1)^2 = x^2 + 2x + 1$ . Show that the area under the graph of  $y = 1$  from  $x = 0$  to  $x = 1$  is equal to 1, and also that the area under the graph of  $y = 2x$  from  $x = 0$  to  $x = 1$  is also equal to 1. Argue that therefore, the area under the graph of  $y = x^2 + 2x + 1$  from  $x = 0$  to  $x = 1$  is equal to  $A + 1 + 1$ .



(c) Combine the two calculations above to calculate the value of  $A$ .

6. (3) **Challenge:** Can you use the same technique to calculate the area under the graph of  $y = x^3$  from  $x = 0$  to  $x = 1$ ? What about  $y = x^4$ ? If you have done these correctly, you should spot a pattern: can you conjecture a formula for the area under the graph of  $x^n$  from  $x = 0$  to  $x = 1$ ?