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A geometric sequence with ratio r is a sequence of numbers a0, a1, a2, . . . where each term is r times

the previous term, i.e. an = ran−1. If the first term is equal to c, then the n-th term is equal to

crn−1. A geometric series is the sum of the terms in a geometric sequence. We proved the formula

for a finite geometric series

c+ cr + cr2 + cr3 + . . .+ crn−1 =
c(1− rn)

1− r

We also proved that when |r| < 1, the infinite geometric series has sum

c+ cr + cr2 + cr3 + . . . =
c

1− r

1. (1) Here you calculate a few geometric series sums.

(a) Calculate the infinite geometric series 5 + 5
4 + 5

16 + 5
64 + . . ..

Solution: The initial term is 5 and the ratio is 1/4, so the sum is 5
1− 1

4

= 20
3

(b) Consider the geometric sequence whose zero-th and first terms are a0 = 2, a1 = 3, . . ..

Write a formula for the n-th term of the sequence. Then use this formula to calculate the

sum of the first 5 terms.

Solution: The n-th term is 2( 32 )
n. Thus, the sum of the first 5 terms is

2(1−( 3
2 )

5)

1− 3
2

=

2(− 211
32 )

− 1
2

= 211
8 .

2. (2) Show each of the following equalities by writing the decimal number on the left side as a

geometric series, and then applying the formula for the sum of an infinite geometric series.

0.333333 . . . = 1/3

0.111111 . . . = 1/9

0.090909 . . . = 1/11

0.142857142857 . . . = 1/7
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Solution:

0.333333 . . . =
3

10
+

3

100
+

3

1000
+ . . .

=
3

10
(1 +

1

10
+

1

102
+ . . .)

=
3

10

(
10

9

)
=

1

3

0.111111 . . . =
1

10
(1 +

1

10
+

1

102
+ . . .)

=
1

10

(
10

9

)
=

1

9

0.090909 . . . =
9

100
+

9

10000
+

9

1000000
+ . . .

=
9

100
(1 +

1

100
+

1

1002
+ . . .)

=
9

100

(
100

99

)
=

1

11

0.142857142857 =
142857

1000000
(1 +

1

1000000
+

1

10000002
+ . . .)

=
142857

1000000

(
1000000

999999

)
=

142857

999999
=

1

7

3. (1) Consider the infinite geometric series formula c+cr+cr2+ . . . = c
1−r . What would happen

on both sides if r = 1 or r = −1? What if |r| > 1? Explain in a few sentences.

Solution: When |r| ≥ 1, the sum c + cr + cr2 + . . . does not converge to a finite value. For

example,

• If r = 1, the sum is c + c + c + . . ., which grows without bound. Correspondingly, the

formula c
1−r involves division by zero which is nonsensical.

• If r = −1, the sum c − c + c − c . . . alternates between 0 and c, never settling on a final

value. The formula c
1−r interestingly yields c

2 , which is halfway between these two values.

• If |r| > 1, the terms crn grow in size without bound.

4. (2) The relationships an = ran−1 defining a geometric series is called a linear recurrence

relation of order 1. In this question we study linear recurrence relations of order 2, i.e. an =

ran−1 + san−2. We focus on an = 5an−1 − 6an−2.

(a) Show that the geometric sequence a0 = 2, a1 = 6, a2 = 18, a3 = 54 . . . satisfies the

recurrence relation an = 5an−1 − 6an−2.

Solution: The general term of this sequence is an = 2 · 3n. So

5an−1 − 6an−2 = 5 · 2 · 3n−1 − 6 · 2 · 3n−2

= (15− 6) · 2 · 3n−2 = 9 · 2 · 3n−2 = 2 · 3n = an
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(b) Show that the geometric sequence b0 = 1, b1 = 2, b2 = 4, b3 = 8 . . . also satisfies the same

recurrence relation bn = 5bn−1 − 6bn−2.

Solution: The general term of this sequence is bn = 2n. So

5bn−1 − 6bn−2 = 5 · 2n−1 − 6 · 2n−2

= (10− 6) · 2n−2 = 4 · 2n−2 = 2n = bn

(c) Show that if we add these two geometric sequences term-wise to obtain the new sequence

c0 = 3, c1 = 8, c2 = 22, c3 = 62, . . ., then cn = 5cn−1 − 6cn−2.

Solution: We can deduce this directly from the first two parts, as

cn = an + bn = 5an−1 − 6an−2 + 5bn−1 − 6bn−2

= 5(an−1 + bn−1)− 6(an−2 − bn−2) = 5cn−1 − 6cn−2

(d) A sequence a0, a1, a2, a3, . . . is known to be a geometric sequence with some unknown

ratio r, and is also known to satisfy the relationship an = 5an−1 − 6an−2 for all n ≥ 2.

What could the possible values of r be? Why?

Solution: Write the n-th term of the sequence an = a0r
n. Then the recurrence relation

becomes

a0r
n = 5a0r

n−1 − 6a0r
n−2 =⇒ rn = 5rn−1 − 6rn−2 =⇒ r2 = 5r − 6

Therefore, either r = 2 or r = 3.

(e) Can you write down another sequence d0, d1, d2, . . . different from the one in part (c)

which is not a geometric sequence, but still satisfies the recurrence dn = 5dn−1 − 6dn−2?

Can you describe a method to make new such sequences?

Solution: Yes, another possible one could be given by dn = 2 ·3n−2n, i.e. 1, 4, 14, 46, . . ..

More generally, any linear combination dn = a · 3n + b · 2n, for fixed numbers a and b,

will satisfy the given recurrence.

(f) A sequence d0, d1, d2, . . . is defined by d0 = 0, d1 = 1, and dn = 5dn−1 − 6dn−2 for all

n ≥ 2. Find a general formula for the n-th term of this sequence.

Solution: Let dn = a · 3n + b · 2n for unknowns a and b. Then the first two terms of the

sequence d0 = 0 and d1 = 1 imply

a · 30 + b · 20 = a+ b = 0

a · 31 + b · 21 = 3a+ 2b = 1

Subtracting twice the first equation from the second implies a = 1, and thus b = −1.

Therefore, dn = 3n − 2n.

6. (2) In this question, we look at infinite series whose terms are formed by multiplying a geometric

sequence by another sequence. Let r be a number with |r| < 1.
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(a) First we search for a formula for the infinite sum 1 + 2r + 3r2 + 4r3 + . . .. Show that

(1 + r + r2 + r3 + . . .)2 = 1 + 2r + 3r2 + 4r3 + . . .

Solution: Expand the left side. For each n, the coefficient of rn comes from n+1 possible

products: 1 · rn, r · rn−1, r2 · rn−2, . . . , rn · 1. So the coefficient of rn is n+ 1.

(b) Use this to calculate the value of the sum 1 + 2(1/3) + 3(1/3)2 + 4(1/3)3 + . . ..

Solution: 1 + 2(1/3) + 3(1/3)2 + 4(1/3)3 + . . . = (1 + 1
3 + 1

32 + . . .)2 =
(
3
2

)2
= 9

4 .

(c) Next, we search for a formula for the infinite sum 1 + 4r + 9r2 + 16r3 + . . .. Show that

(1 + r + r2 + r3 + . . .)(1 + 3r + 5r2 + 7r3 + . . .) = 1 + 4r + 9r2 + 16r3 + . . .

Solution: The coefficient for rn when we expand the left side is 1+3+5+ . . .+(2n−1).

Call this sum S. Then

1 + 3 + . . .+ (2n− 3) + (2n− 1) = S

(2n− 1) + (2n− 3) + . . .+ 3 + 1 = S

2n+ 2n+ . . .+ 2n+ 2n = 2S

There are n terms in the sum on the left, so 2S = 2n2 =⇒ S = n2.

(d) Use part (a) to find a formula for 1 + 3r + 5r2 + . . ., and then use this to calculate

1 + 4(1/5) + 9(1/5)2 + 16(1/5)3 + 25(1/5)4 + . . .

Solution:

1 + 3r + 5r2 + . . . = (2 + 4r + 6r2 + . . .)− (1 + r + r2 + . . .)

= 2(1 + r + r2 + . . .)2 − (1 + r + r2 + . . .)

=
2

(1− r)2
− 1

1− r

Thus, 1 + 4r + 9r2 + 16r3 + . . . = 2
(1−r)3 − 1

(1−r)2 . So,

1 + 4(1/5) + 9(1/5)2 + 16(1/5)3 + . . . =
2

(4/5)3
− 1

(4/5)2
=

250

64
− 25

16
=

75

32

Bonus – Calculating square roots

7. (3) Remember the iterative method of calculating
√
a discussed in Class #1: we begin with

an initial guess x0, and then we repeatedly apply the function f(x) = 1
2 (x+ a

x ) to get better

approximations x1, x2, x3, . . .. In this question you’ll analyze this method using the geometric

series formula. For simplicity we’ll set a = 2, so that the function is f(x) = 1
2 (x+ 2

x ).

(a) Let x = (1 + e)
√
2 for some number e with |e| < 1. Show that 2

x = (1− e+ e2 − . . .)
√
2.
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Solution: Plug in the definition of x, and then use the formula for a geometric series

with ratio −e.
2

x
=

2

(1 + e)
√
2
=

√
2

1 + e
= (1− e+ e2 − . . .)

√
2

(b) Use part (a) to show that f(x) = (1 + e2

2(1+e) )
√
2.

Solution: Since x = (1 + e)
√
2, we have

x+
2

x
= (2 + e2 − e3 + e4 − . . .)

√
2

= (2 + e2(1− e+ e2 − . . .))
√
2

=

(
2 +

e2

1 + e

)√
2

Dividing by 2 on both sides gives f(x) = (1 + e2

2(1+e) )
√
2.

(c) Suppose that x is a fairly good approximation to
√
2 – e.g. 0.9

√
2 < x < 1.1

√
2. Show

that
√
2 < f(x) < 1.01

√
2.

Solution: Let x = (1 + e)
√
2, and consider the formula f(x) = (1 + e2

2(1+e) )
√
2. We are

given that −0.1 < e < 0.1. Then,

e2 < 0.01 and 2(1 + e) > 2(0.9) > 1

Thus, e2

2(1+e) < 0.01
1 = 0.01. This implies that f(x) < 1.01

√
2. It is also clear that

f(x) >
√
2 because e2

2(1+e) > 0.

(d) Suppose that x is a very good approximation to
√
2 – e.g. 0.99

√
2 < x < 1.01

√
2. Show

that
√
2 < f(x) < 1.0001

√
2.

Solution: Again let x = (1+ e)
√
2, and consider the formula f(x) = (1+ e2

2(1+e) )
√
2. We

are given that −0.01 < e < 0.01. Then,

e2 < 0.0001 and 2(1 + e) > 2(0.99) > 1

Thus, e2

2(1+e) <
0.0001

1 = 0.0001. This implies that f(x) < 1.0001
√
2. The same reasoning

as before implies that f(x) >
√
2.

(e) Suppose that x ≈
√
2 is correct to d digits of accuracy, i.e., (1− 1

10d
)
√
2 < x < (1+ 1

10d
)
√
2.

Show that f(x) ≈
√
2 is correct to about 2d digits of accuracy, i.e.

√
2 < f(x) < (1 +

1

102d
)
√
2

Solution: Use the same reasoning: let x = (1+ e)
√
2, and we are given that − 1

10d
< e <

1
10d

. Then,

e2 <
1

102d
and 2(1 + e) > 2(1− 1

10d
) > 1

Thus, e2

2(1+e) < 1
102d

. This implies that f(x) < (1 + 1
102d

)
√
2. The same reasoning as

before implies that f(x) >
√
2.
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(f) Suppose we begin with the initial approximation x0 = 1.5, which satisfies x0 < 1.1
√
2

and apply the iterative method described. By the reasoning described above, at least how

many digits of accuracy will x4 have?

Solution: Applying part (e), we have

x1 < 1.01
√
2

x2 < 1.0001
√
2 =

(
1 +

1

104

)√
2

x3 <

(
1 +

1

108

)√
2

x4 <

(
1 +

1

1016

)√
2

Therefore, x4 is accurate to at least 16 digits. (It turns out that x1 = 17
12 is correct to 2

digits after the decimal point, x2 = 577
408 is correct to 5 digits, x3 = 665857

470832 is correct to 11

digits, and x4 = 886731088897
627013566048 is correct to 23 digits.
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