

Omega HW #4 – Geometric sequences and series

Krishanu Sankar

November 2, 2025

A *geometric sequence* with ratio r is a sequence of numbers a_0, a_1, a_2, \dots where each term is r times the previous term, i.e. $a_n = ra_{n-1}$. If the first term is equal to c , then the n -th term is equal to cr^{n-1} . A *geometric series* is the sum of the terms in a geometric sequence. We proved the formula for a *finite* geometric series

$$c + cr + cr^2 + cr^3 + \dots + cr^{n-1} = \frac{c(1 - r^n)}{1 - r}$$

We also proved that when $|r| < 1$, the *infinite* geometric series has sum

$$c + cr + cr^2 + cr^3 + \dots = \frac{c}{1 - r}$$

1. (1) Here you calculate a few geometric series sums.

- (a) Calculate the infinite geometric series $5 + \frac{5}{4} + \frac{5}{16} + \frac{5}{64} + \dots$

Solution: The initial term is 5 and the ratio is $1/4$, so the sum is $\frac{5}{1 - \frac{1}{4}} = \frac{20}{3}$

- (b) Consider the geometric sequence whose zero-th and first terms are $a_0 = 2, a_1 = 3, \dots$. Write a formula for the n -th term of the sequence. Then use this formula to calculate the sum of the first 5 terms.

Solution: The n -th term is $2(\frac{3}{2})^n$. Thus, the sum of the first 5 terms is $\frac{2(1 - (\frac{3}{2})^5)}{1 - \frac{3}{2}} = \frac{2(-\frac{211}{32})}{-\frac{1}{2}} = \frac{211}{8}$.

2. (2) Show each of the following equalities by writing the decimal number on the left side as a geometric series, and then applying the formula for the sum of an infinite geometric series.

$$0.333333\dots = 1/3$$

$$0.111111\dots = 1/9$$

$$0.090909\dots = 1/11$$

$$0.142857142857\dots = 1/7$$

Solution:

$$\begin{aligned}
 0.333333\ldots &= \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots \\
 &= \frac{3}{10} \left(1 + \frac{1}{10} + \frac{1}{10^2} + \dots\right) \\
 &= \frac{3}{10} \left(\frac{10}{9}\right) = \frac{1}{3} \\
 0.111111\ldots &= \frac{1}{10} \left(1 + \frac{1}{10} + \frac{1}{10^2} + \dots\right) \\
 &= \frac{1}{10} \left(\frac{10}{9}\right) = \frac{1}{9} \\
 0.090909\ldots &= \frac{9}{100} + \frac{9}{10000} + \frac{9}{1000000} + \dots \\
 &= \frac{9}{100} \left(1 + \frac{1}{100} + \frac{1}{100^2} + \dots\right) \\
 &= \frac{9}{100} \left(\frac{100}{99}\right) = \frac{1}{11} \\
 0.142857142857 &= \frac{142857}{1000000} \left(1 + \frac{1}{1000000} + \frac{1}{1000000^2} + \dots\right) \\
 &= \frac{142857}{1000000} \left(\frac{1000000}{999999}\right) = \frac{142857}{999999} = \frac{1}{7}
 \end{aligned}$$

3. (1) Consider the *infinite* geometric series formula $c + cr + cr^2 + \dots = \frac{c}{1-r}$. What would happen on both sides if $r = 1$ or $r = -1$? What if $|r| > 1$? Explain in a few sentences.

Solution: When $|r| \geq 1$, the sum $c + cr + cr^2 + \dots$ does not converge to a finite value. For example,

- If $r = 1$, the sum is $c + c + c + \dots$, which grows without bound. Correspondingly, the formula $\frac{c}{1-r}$ involves division by zero which is nonsensical.
- If $r = -1$, the sum $c - c + c - c \dots$ alternates between 0 and c , never settling on a final value. The formula $\frac{c}{1-r}$ interestingly yields $\frac{c}{2}$, which is halfway between these two values.
- If $|r| > 1$, the terms cr^n grow in size without bound.

4. (2) The relationships $a_n = ra_{n-1}$ defining a geometric series is called a *linear recurrence relation* of order 1. In this question we study linear recurrence relations of order 2, i.e. $a_n = ra_{n-1} + sa_{n-2}$. We focus on $a_n = 5a_{n-1} - 6a_{n-2}$.

- (a) Show that the geometric sequence $a_0 = 2, a_1 = 6, a_2 = 18, a_3 = 54 \dots$ satisfies the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$.

Solution: The general term of this sequence is $a_n = 2 \cdot 3^n$. So

$$\begin{aligned}
 5a_{n-1} - 6a_{n-2} &= 5 \cdot 2 \cdot 3^{n-1} - 6 \cdot 2 \cdot 3^{n-2} \\
 &= (15 - 6) \cdot 2 \cdot 3^{n-2} = 9 \cdot 2 \cdot 3^{n-2} = 2 \cdot 3^n = a_n
 \end{aligned}$$

- (b) Show that the geometric sequence $b_0 = 1, b_1 = 2, b_2 = 4, b_3 = 8, \dots$ also satisfies the same recurrence relation $b_n = 5b_{n-1} - 6b_{n-2}$.

Solution: The general term of this sequence is $b_n = 2^n$. So

$$\begin{aligned} 5b_{n-1} - 6b_{n-2} &= 5 \cdot 2^{n-1} - 6 \cdot 2^{n-2} \\ &= (10 - 6) \cdot 2^{n-2} = 4 \cdot 2^{n-2} = 2^n = b_n \end{aligned}$$

- (c) Show that if we add these two geometric sequences term-wise to obtain the new sequence $c_0 = 3, c_1 = 8, c_2 = 22, c_3 = 62, \dots$, then $c_n = 5c_{n-1} - 6c_{n-2}$.

Solution: We can deduce this directly from the first two parts, as

$$\begin{aligned} c_n &= a_n + b_n = 5a_{n-1} - 6a_{n-2} + 5b_{n-1} - 6b_{n-2} \\ &= 5(a_{n-1} + b_{n-1}) - 6(a_{n-2} + b_{n-2}) = 5c_{n-1} - 6c_{n-2} \end{aligned}$$

- (d) A sequence $a_0, a_1, a_2, a_3, \dots$ is known to be a geometric sequence with some unknown ratio r , and is also known to satisfy the relationship $a_n = 5a_{n-1} - 6a_{n-2}$ for all $n \geq 2$. What could the possible values of r be? Why?

Solution: Write the n -th term of the sequence $a_n = a_0 r^n$. Then the recurrence relation becomes

$$a_0 r^n = 5a_0 r^{n-1} - 6a_0 r^{n-2} \implies r^n = 5r^{n-1} - 6r^{n-2} \implies r^2 = 5r - 6$$

Therefore, either $r = 2$ or $r = 3$.

- (e) Can you write down another sequence d_0, d_1, d_2, \dots different from the one in part (c) which is *not* a geometric sequence, but still satisfies the recurrence $d_n = 5d_{n-1} - 6d_{n-2}$? Can you describe a method to make new such sequences?

Solution: Yes, another possible one could be given by $d_n = 2 \cdot 3^n - 2^n$, i.e. $1, 4, 14, 46, \dots$. More generally, any *linear combination* $d_n = a \cdot 3^n + b \cdot 2^n$, for fixed numbers a and b , will satisfy the given recurrence.

- (f) A sequence d_0, d_1, d_2, \dots is defined by $d_0 = 0$, $d_1 = 1$, and $d_n = 5d_{n-1} - 6d_{n-2}$ for all $n \geq 2$. Find a general formula for the n -th term of this sequence.

Solution: Let $d_n = a \cdot 3^n + b \cdot 2^n$ for unknowns a and b . Then the first two terms of the sequence $d_0 = 0$ and $d_1 = 1$ imply

$$a \cdot 3^0 + b \cdot 2^0 = a + b = 0$$

$$a \cdot 3^1 + b \cdot 2^1 = 3a + 2b = 1$$

Subtracting twice the first equation from the second implies $a = 1$, and thus $b = -1$. Therefore, $d_n = 3^n - 2^n$.

6. (2) In this question, we look at infinite series whose terms are formed by multiplying a geometric sequence by another sequence. Let r be a number with $|r| < 1$.

- (a) First we search for a formula for the infinite sum $1 + 2r + 3r^2 + 4r^3 + \dots$. Show that

$$(1 + r + r^2 + r^3 + \dots)^2 = 1 + 2r + 3r^2 + 4r^3 + \dots$$

Solution: Expand the left side. For each n , the coefficient of r^n comes from $n+1$ possible products: $1 \cdot r^n, r \cdot r^{n-1}, r^2 \cdot r^{n-2}, \dots, r^n \cdot 1$. So the coefficient of r^n is $n+1$.

- (b) Use this to calculate the value of the sum $1 + 2(1/3) + 3(1/3)^2 + 4(1/3)^3 + \dots$

$$\text{Solution: } 1 + 2(1/3) + 3(1/3)^2 + 4(1/3)^3 + \dots = (1 + \frac{1}{3} + \frac{1}{3^2} + \dots)^2 = (\frac{3}{2})^2 = \frac{9}{4}.$$

- (c) Next, we search for a formula for the infinite sum $1 + 4r + 9r^2 + 16r^3 + \dots$. Show that

$$(1 + r + r^2 + r^3 + \dots)(1 + 3r + 5r^2 + 7r^3 + \dots) = 1 + 4r + 9r^2 + 16r^3 + \dots$$

Solution: The coefficient for r^n when we expand the left side is $1 + 3 + 5 + \dots + (2n-1)$. Call this sum S . Then

$$1 + 3 + \dots + (2n-3) + (2n-1) = S$$

$$(2n-1) + (2n-3) + \dots + 3 + 1 = S$$

$$2n + 2n + \dots + 2n + 2n = 2S$$

There are n terms in the sum on the left, so $2S = 2n^2 \implies S = n^2$.

- (d) Use part (a) to find a formula for $1 + 3r + 5r^2 + \dots$, and then use this to calculate

$$1 + 4(1/5) + 9(1/5)^2 + 16(1/5)^3 + 25(1/5)^4 + \dots$$

Solution:

$$\begin{aligned} 1 + 3r + 5r^2 + \dots &= (2 + 4r + 6r^2 + \dots) - (1 + r + r^2 + \dots) \\ &= 2(1 + r + r^2 + \dots)^2 - (1 + r + r^2 + \dots) \\ &= \frac{2}{(1-r)^2} - \frac{1}{1-r} \end{aligned}$$

Thus, $1 + 4r + 9r^2 + 16r^3 + \dots = \frac{2}{(1-r)^3} - \frac{1}{(1-r)^2}$. So,

$$1 + 4(1/5) + 9(1/5)^2 + 16(1/5)^3 + \dots = \frac{2}{(4/5)^3} - \frac{1}{(4/5)^2} = \frac{250}{64} - \frac{25}{16} = \frac{75}{32}$$

Bonus – Calculating square roots

7. (3) Remember the iterative method of calculating \sqrt{a} discussed in Class #1: we begin with an initial guess x_0 , and then we repeatedly apply the function $f(x) = \frac{1}{2}(x + \frac{a}{x})$ to get better approximations x_1, x_2, x_3, \dots . In this question you'll analyze this method using the geometric series formula. For simplicity we'll set $a = 2$, so that the function is $f(x) = \frac{1}{2}(x + \frac{2}{x})$.

- (a) Let $x = (1 + e)\sqrt{2}$ for some number e with $|e| < 1$. Show that $\frac{2}{x} = (1 - e + e^2 - \dots)\sqrt{2}$.

Solution: Plug in the definition of x , and then use the formula for a geometric series with ratio $-e$.

$$\frac{2}{x} = \frac{2}{(1+e)\sqrt{2}} = \frac{\sqrt{2}}{1+e} = (1 - e + e^2 - \dots)\sqrt{2}$$

- (b) Use part (a) to show that $f(x) = (1 + \frac{e^2}{2(1+e)})\sqrt{2}$.

Solution: Since $x = (1+e)\sqrt{2}$, we have

$$\begin{aligned} x + \frac{2}{x} &= (2 + e^2 - e^3 + e^4 - \dots)\sqrt{2} \\ &= (2 + e^2(1 - e + e^2 - \dots))\sqrt{2} \\ &= \left(2 + \frac{e^2}{1+e}\right)\sqrt{2} \end{aligned}$$

Dividing by 2 on both sides gives $f(x) = (1 + \frac{e^2}{2(1+e)})\sqrt{2}$.

- (c) Suppose that x is a fairly good approximation to $\sqrt{2}$ – e.g. $0.9\sqrt{2} < x < 1.1\sqrt{2}$. Show that $\sqrt{2} < f(x) < 1.01\sqrt{2}$.

Solution: Let $x = (1+e)\sqrt{2}$, and consider the formula $f(x) = (1 + \frac{e^2}{2(1+e)})\sqrt{2}$. We are given that $-0.1 < e < 0.1$. Then,

$$e^2 < 0.01 \quad \text{and} \quad 2(1+e) > 2(0.9) > 1$$

Thus, $\frac{e^2}{2(1+e)} < \frac{0.01}{1} = 0.01$. This implies that $f(x) < 1.01\sqrt{2}$. It is also clear that $f(x) > \sqrt{2}$ because $\frac{e^2}{2(1+e)} > 0$.

- (d) Suppose that x is a very good approximation to $\sqrt{2}$ – e.g. $0.99\sqrt{2} < x < 1.01\sqrt{2}$. Show that $\sqrt{2} < f(x) < 1.0001\sqrt{2}$.

Solution: Again let $x = (1+e)\sqrt{2}$, and consider the formula $f(x) = (1 + \frac{e^2}{2(1+e)})\sqrt{2}$. We are given that $-0.01 < e < 0.01$. Then,

$$e^2 < 0.0001 \quad \text{and} \quad 2(1+e) > 2(0.99) > 1$$

Thus, $\frac{e^2}{2(1+e)} < \frac{0.0001}{1} = 0.0001$. This implies that $f(x) < 1.0001\sqrt{2}$. The same reasoning as before implies that $f(x) > \sqrt{2}$.

- (e) Suppose that $x \approx \sqrt{2}$ is correct to d digits of accuracy, i.e., $(1 - \frac{1}{10^d})\sqrt{2} < x < (1 + \frac{1}{10^d})\sqrt{2}$. Show that $f(x) \approx \sqrt{2}$ is correct to about $2d$ digits of accuracy, i.e.

$$\sqrt{2} < f(x) < (1 + \frac{1}{10^{2d}})\sqrt{2}$$

Solution: Use the same reasoning: let $x = (1+e)\sqrt{2}$, and we are given that $-\frac{1}{10^d} < e < \frac{1}{10^d}$. Then,

$$e^2 < \frac{1}{10^{2d}} \quad \text{and} \quad 2(1+e) > 2(1 - \frac{1}{10^d}) > 1$$

Thus, $\frac{e^2}{2(1+e)} < \frac{1}{10^{2d}}$. This implies that $f(x) < (1 + \frac{1}{10^{2d}})\sqrt{2}$. The same reasoning as before implies that $f(x) > \sqrt{2}$.

- (f) Suppose we begin with the initial approximation $x_0 = 1.5$, which satisfies $x_0 < 1.1\sqrt{2}$ and apply the iterative method described. By the reasoning described above, at least how many digits of accuracy will x_4 have?

Solution: Applying part (e), we have

$$\begin{aligned}x_1 &< 1.01\sqrt{2} \\x_2 &< 1.0001\sqrt{2} = \left(1 + \frac{1}{10^4}\right)\sqrt{2} \\x_3 &< \left(1 + \frac{1}{10^8}\right)\sqrt{2} \\x_4 &< \left(1 + \frac{1}{10^{16}}\right)\sqrt{2}\end{aligned}$$

Therefore, x_4 is accurate to *at least* 16 digits. (It turns out that $x_1 = \frac{17}{12}$ is correct to 2 digits after the decimal point, $x_2 = \frac{577}{408}$ is correct to 5 digits, $x_3 = \frac{665857}{470832}$ is correct to 11 digits, and $x_4 = \frac{886731088897}{627013566048}$ is correct to 23 digits.