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November 2, 2025

A geometric sequence with ratio r is a sequence of numbers ag, a1, as, ... where each term is r times
the previous term, i.e. a, = ra,_1. If the first term is equal to ¢, then the n-th term is equal to
er™ . A geometric series is the sum of the terms in a geometric sequence. We proved the formula
for a finite geometric series
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c+cr+cr2+cr3+...+cr”_1:76(1 )
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We also proved that when |r| < 1, the infinite geometric series has sum

C

c+cr+cr2—|—cr3+...:
1—r

1. (1) Here you calculate a few geometric series sums.

(a) Calculate the infinite geometric series 5+ 2 + 2 + 2 + .. ..

Solution: The initial term is 5 and the ratio is 1/4, so the sum is T = 2—50
I .

(b) Counsider the geometric sequence whose zero-th and first terms are ag = 2,a; = 3,. ...
Write a formula for the n-th term of the sequence. Then use this formula to calculate the
sum of the first 5 terms.

Solution: The n-th term is 2(%)” Thus, the sum of the first 5 terms is @ =

2(=23) _ 211

—_1  — g -

wleefoles

||

2. (2) Show each of the following equalities by writing the decimal number on the left side as a
geometric series, and then applying the formula for the sum of an infinite geometric series.

0.333333...=1/3

0.111111...=1/9
0.090909...=1/11
0.142857142857...=1/7



3. (1) Consider the infinite geometric series formula c+cr—+cr?+... =

Solution:

3 3 3
3 1 1
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0.111111... = —(AQ+—4+-—=+...)

0.090909... = 100 + 10000 + 1000000 + ...
= Qs
100" " 100 T 1002
9 /100\ 1
- 1w (%) = 1

142857 1 1

1000000( i 1000000 i 10000002 o)

142857 (10000007 _ 142857 1
1000000 \ 999999 / = 999999 ~ 7

0.142857142857 =

C

7= What would happen
on both sides if r =1 or 7 = —1? What if |r| > 17 Explain in a few sentences.

Solution: When |r| > 1, the sum ¢ + cr + er? + ... does not converge to a finite value. For
example,

e If r =1, the sum is ¢+ ¢ + ¢+ ..., which grows without bound. Correspondingly, the

c
1—r

formula involves division by zero which is nonsensical.

e If r=—1, the sum ¢ — ¢+ ¢ — c... alternates between 0 and ¢, never settling on a final
value. The formula

75 interestingly yields £, which is halfway between these two values.

e If || > 1, the terms ¢r™ grow in size without bound.

. (2) The relationships a, = ra,_; defining a geometric series is called a linear recurrence
relation of order 1. In this question we study linear recurrence relations of order 2, i.e. a, =
rGp_1 + Sa,_o. We focus on a,, = da,_1 — 6a,_s.

(a) Show that the geometric sequence ay = 2,a1 = 6,a3 = 18,a3 = 54... satisfies the
recurrence relation a,, = b5a,,_1 — 6a,_s.

Solution: The general term of this sequence is a,, = 2-3". So

Sapn_1 —6ap—o = 5-2-3""1—-6.2.3"72
= (15-6)-2:3"2=9.2.3"2=2.3"=q,



(b) Show that the geometric sequence by = 1,b1 = 2,by = 4,b3 = 8. .. also satisfies the same
recurrence relation b,, = 5b,,_1 — 6b,,_o.

Solution: The general term of this sequence is b, = 2". So

5bn71 - Gbn,Q = 5 . 2"*1 o 6 . 27172

= (10-6)-2"2?=4.2""2=2"=b,

(¢) Show that if we add these two geometric sequences term-wise to obtain the new sequence
co=3,c1 =8,c9 =22,c3 =62,..., then ¢,, = 5¢c,,_1 — 6cp_o.

Solution: We can deduce this directly from the first two parts, as
Cn = Qp + by =5a,_1 — 6ay_2 + 5by_1 — 6by_2

- 5((1,”,1 + bnfl) - 6((Ln72 - bn72) - 56’”71 - 60n72

(d) A sequence ag,as,as,as,... is known to be a geometric sequence with some unknown
ratio r, and is also known to satisfy the relationship a,, = 5a,—1 — 6a,_o for all n > 2.
What could the possible values of r be? Why?

Solution: Write the n-th term of the sequence a,, = agr™. Then the recurrence relation
becomes

aor™ = bagr" !t —6agr" T = " =5r""—6r"? = 2 =5r—6

Therefore, either r = 2 or r = 3.

(e) Can you write down another sequence do,ds,ds,... different from the one in part (c)
which is not a geometric sequence, but still satisfies the recurrence d,, = 5d,,—1 — 6d,,—27
Can you describe a method to make new such sequences?

Solution: Yes, another possible one could be given by d,, = 2-3™—2" i.e. 1,4,14,46,....
More generally, any linear combination d, = a -3"™ + b - 2™, for fixed numbers a and b,
will satisfy the given recurrence.

(f) A sequence dgy,dq,ds, ... is defined by dy = 0, d; = 1, and d,, = 5d,,—1 — 6d,,—2 for all
n > 2. Find a general formula for the n-th term of this sequence.

Solution: Let d,, = a-3" +b- 2™ for unknowns a and b. Then the first two terms of the
sequence dop = 0 and dy = 1 imply

a-3°4+b-22=a+b=0

a-3'+b-2'=3a+20=1

Subtracting twice the first equation from the second implies ¢ = 1, and thus b = —1.
Therefore, d,, = 3" — 2".

6. (2) In this question, we look at infinite series whose terms are formed by multiplying a geometric
sequence by another sequence. Let 7 be a number with |r| < 1.



(a) First we search for a formula for the infinite sum 1 + 2r + 3r% + 472 + . ... Show that
A+r+r?4+r3 4. )2 =14+2r +3r2 + 473 + ...

Solution: Expand the left side. For each n, the coefficient of 7" comes from n+ 1 possible
products: 1-¢™, -1 p2.pn=2 7.1, So the coefficient of 7™ is n + 1.

(b) Use this to calculate the value of the sum 1+ 2(1/3) + 3(1/3)% +4(1/3)% + ...
Solution: 1+2(1/3) +3(1/3)2+4(1/3)3 +... = (1+ 1+ L +..)2= (3)" = 2.
(c) Next, we search for a formula for the infinite sum 1 + 4r + 972 + 1613 + .... Show that

A+r+r? 43+ )A+3r+5r2 + 73 + .. ) =1 +4r + 972 +16r° + ...

Solution: The coefficient for ™ when we expand the left side is 1 +3+54...+ (2n—1).
Call this sum S. Then

143+...+(2n—-3)+(2n—-1)=S
Cn—-1)+(2n—-3)+...+34+1=S5

n+2n+...+2n+2n =295

There are n terms in the sum on the left, so 25 = 2n?> = S =n2

d) Use part (a) to find a formula for 1 + 37 + 52 + .. ., and then use this to calculate
(

1+4(1/5) +9(1/5)% +16(1/5) +25(1/5)* + ...

Solution:
14+3r+5ri+... = Q24+4r+6r°4+..) =1 +r+ri+..)
= 201 +r+r+. ) = (Q4r+ri+..)
B 2 1
a (I—-r)2 1-r
Thus, 1 +4r +9r2 +16r3 + ... = A=) — (1ET)2. So,
‘ 2 1 250 25 75
14+4(1/5)+9(1/5)% + 16(1/5)> = — = - ===
+4(1/5) +9(1/5)" +16(1/5)" + @5)P  (@B2 64 16 32

Bonus — Calculating square roots

. (3) Remember the iterative method of calculating /a discussed in Class #1: we begin with
an initial guess xg, and then we repeatedly apply the function f(z) = %(x + ) to get better
approximations 1, xs, x3,.... In this question you’ll analyze this method using the geometric
series formula. For simplicity we’ll set a = 2, so that the function is f(z) = 1(z + 2).

(a) Let 2 = (1 + €)v/2 for some number e with |e| < 1. Show that 2 = (1 —e+e? —...)V2.



Solution: Plug in the definition of z, and then use the formula for a geometric series

2 2 V2

x (1—|—e)\/§:1—|—e

with ratio —e.

=(l—e+e?—..)V2

Use part (a) to show that f(x) = (1+ 2(f—j-e))\/§

Solution: Since z = (1 + €)v/2, we have

2
T+ —
x

(2+e2—ed+et— . )V2
(2+e2(1—e+e?— . ))V2

<2+1€j6>\/§

Dividing by 2 on both sides gives f(x) = (1 + 2(1&7;))\/5
Suppose that z is a fairly good approximation to v2 — e.g. 0.9v/2 < z < 1.1v/2. Show
that v2 < f(z) < 1.01v/2.

2

Solution: Let = (1 4 ¢)v/2, and consider the formula f(z) = (1 + ﬁ)ﬂ We are
given that —0.1 < e < 0.1. Then,

e? < 0.01 and 2(1+e) >2(0.9) > 1

Thus, 2(57;) < 29 — 0.01. This implies that f(z) < 1.01v/2. It is also clear that

f(z) > /2 because 2({7;) > 0.
Suppose that z is a very good approximation to v2 — e.g. 0.99v/2 < z < 1.01v/2. Show
that v/2 < f(z) < 1.0001v/2.

Solution: Again let 2 = (14 ¢€)v/2, and consider the formula f(x) = (1+ 2(197;))\/5 We
are given that —0.01 < e < 0.01. Then,

e? < 0.0001 and 2(1+¢) >2(0.99) > 1

Thus, 2(167;) < Q0001 — 0.0001. This implies that f(z) < 1.0001v/2. The same reasoning
as before implies that f(z) > v/2.
Suppose that 2 ~ v/2 is correct to d digits of accuracy, i.e., (1— ﬁ)ﬁ <z < (1+10Ld)\/§.

Show that f(z) ~ v/2 is correct to about 2d digits of accuracy, i.e.

V2 < flz) < (1+ . W2

102

Solution: Use the same reasoning: let # = (14 ¢)v/2, and we are given that — 7 < e <

ﬁ. Then, ' .
Thus, 2(167; < gzz. This implies that f(z) < (1 + 0s)V2. The same reasoning as

before implies that f(z) > v/2.



(f) Suppose we begin with the initial approximation zo = 1.5, which satisfies 29 < 1.1v/2
and apply the iterative method described. By the reasoning described above, at least how
many digits of accuracy will x4 have?

Solution: Applying part (e), we have

T < 1.01V2
1
Ty < 1.0001\/5:(1+>ﬁ

104
1+ 1 V2
108

(1+10116)\@

A

Zs3

A

Ty

Therefore, x4 is accurate to at least 16 digits. (It turns out that z; = % is correct to 2
digits after the decimal point, zo = 377 is correct to 5 digits, x5 = 963857

) 408 ~ 470832
digits, and x4 = % is correct to 23 digits.

is correct to 11




