

Omega HW #1 – Calculating functions (Solutions)

Square roots

In class, we talked about two methods of calculating $\sqrt{2}$. In the “decimal” method, we considered the decimal representation $\sqrt{2} = 1.d_1d_2d_3d_4\dots$ and iteratively calculated d_1, d_2, d_3 , and so on. In the “fractional” method, we begin with an initial approximation x (e.g., $x = 1$), and repeatedly applied the transformation $x \mapsto \frac{1}{2}(x + \frac{1}{x})$ to get successively better approximations.

1. (1) Calculate $\sqrt{17}$ to at least 3 decimal places, using the decimal method.

Solution:

$$\begin{array}{r} 4 \ . \ 1 \ 2 \ 3 \dots \\ \hline) 17 \ . 00 00 00 \dots \\ - 16 \\ \hline 1 \ 00 \\ - \ 80 \\ \hline - \ 1 \\ \hline 19 \ 00 \\ - 16 \ 40 \\ \hline - \ 4 \\ \hline 2 \ 56 \ 00 \\ - 2 \ 47 \ 20 \\ \hline - \ 9 \\ \hline 8 \ 71 \\ \vdots \end{array}$$

2. (2) Calculate the first three fractional approximations of $\sqrt{17}$. (Hint: You will need to change the transformation you use.)

Solution: We use the transformation $x \mapsto \frac{1}{2}(x + \frac{17}{x})$. If we begin with the initial approximation $x_0 = 1$, then our successive approximants are

$$x_1 = \frac{1}{2}(x_0 + \frac{17}{x_0}) = \frac{1}{2}(1 + \frac{17}{1}) = 9$$

$$x_2 = \frac{1}{2}(x_1 + \frac{17}{x_1}) = \frac{1}{2}(9 + \frac{17}{9}) = \frac{49}{9} \approx 5.4444\dots$$

$$x_3 = \frac{1}{2}(x_2 + \frac{17}{x_2}) = \frac{1}{2}(\frac{49}{9} + \frac{17 \cdot 9}{49}) = \frac{1889}{441} \approx 4.2834\dots$$

If we begin with a better initial guess, we will converge more quickly. For example, if $x_0 = 4$

then

$$x_1 = \frac{1}{2}\left(4 + \frac{17}{4}\right) = \frac{33}{8} = 4.125$$

$$x_2 = \frac{1}{2}\left(\frac{33}{8} + \frac{17 \cdot 8}{33}\right) = \frac{2177}{528} \approx 4.123106\dots$$

$$x_3 = \frac{1}{2}\left(\frac{2177}{528} + \frac{17 \cdot 528}{2177}\right) = \frac{9478657}{2298912} \approx 4.123106\dots$$

This final approximation is correct to 13 decimal places!

3. Let $f(x) = \frac{1}{2}(x + \frac{2}{x})$.

(a) (1) Calculate $f(\sqrt{2})$. **Solution:** $f(\sqrt{2}) = \frac{1}{2}(\sqrt{2} + \frac{2}{\sqrt{2}}) = \frac{1}{2}(\sqrt{2} + \sqrt{2}) = \boxed{\sqrt{2}}$.

(b) (1) Draw a sketch of $y = f(x)$ for $1 \leq x \leq 2$. You can use a tool to help you, e.g. <https://www.desmos.com/calculator>. Indicate the following points in the graph:

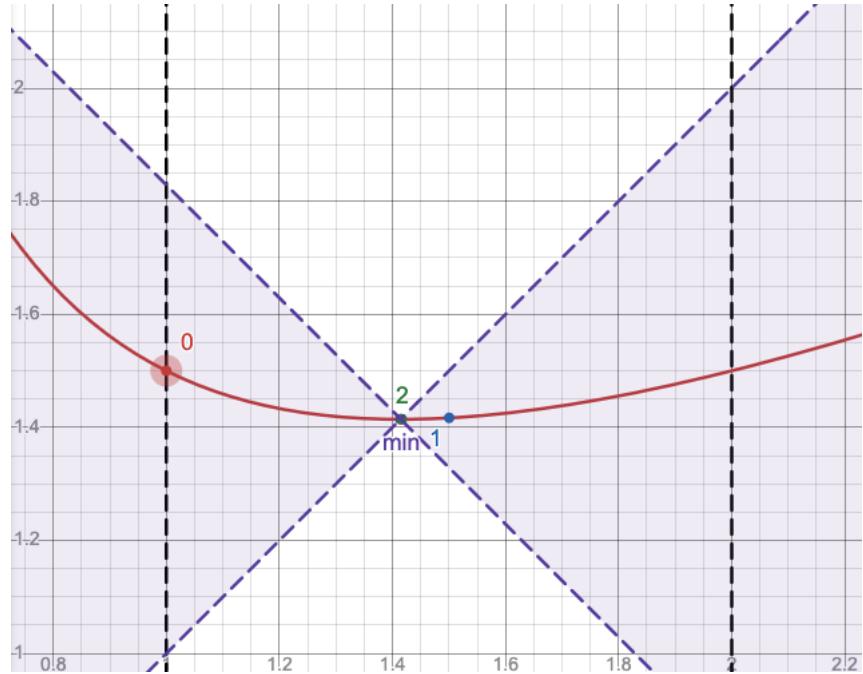
- The minimum value of the function.
- The points $(x, f(x))$ for the first three x values in the fractional method (beginning with $x = 1$).

Solution: See the solution to the next part, where additional visualizations are marked.

(c) (2) If x is a number in the interval $[1, 2]$, what can you say about the relative sizes of $|x - \sqrt{2}|$ and $|f(x) - \sqrt{2}|$, based on looking at this graph? Which is larger, and why?

Solution: The graph below indicates the minimum value, as well as the first three iterates. The shaded regions indicate the regions where $|y - \sqrt{2}| < |x - \sqrt{2}|$. The graph of $y = f(x)$ is completely contained within these shaded regions, so this implies that for each iterate $x = x_0, x_1, x_2, \dots$, $f(x)$ will be closer to $\sqrt{2}$ than x is.¹

¹This graph was generated using Desmos – see <https://www.desmos.com/calculator/t298dirp3y>.



Functions and inverses

Given a function $f(x)$, its *inverse* $f^{-1}(x)$ (if it exists!) is a function such that

- $f^{-1}(f(x)) = x$ for all x in the domain of f , and
- $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} .

1 (1) Find the inverse of $f(x) = 4 - \frac{3}{4}x$.

Solution: The inverse must satisfy $x = 4 - \frac{3}{4}f^{-1}(x)$. Solving this equation gives $f^{-1}(x) = \frac{4}{3}(4 - x) = \frac{16}{3} - \frac{4}{3}x$.

2 (2) Let $f(x) = 3x^2 + 4x + 3$.

- Find a function $g(x)$ such that $f(g(x)) = x$. ²

²*Hint:* Complete the square.

Solution 1: Using the hint, we complete the square.

$$\begin{aligned}
 f(x) &= 3\left(x^2 + \frac{4}{3}x\right) + 3 \\
 &= 3\left(\left(x + \frac{2}{3}\right)^2 - \frac{4}{9}\right) + 3 \\
 &= 3\left(x + \frac{2}{3}\right)^2 - \frac{4}{3} + 3 \\
 &= 3\left(x + \frac{2}{3}\right)^2 + \frac{5}{3}
 \end{aligned}$$

From here, we put $g(x)$ in place of x and x in place of $f(x)$ to get

$$\begin{aligned}
 x &= 3(g(x) + \frac{2}{3})^2 + \frac{5}{3} \\
 \frac{3x - 5}{9} &= (g(x) + \frac{2}{3})^2 \\
 -\frac{2}{3} \pm \sqrt{\frac{3x - 5}{9}} &= g(x)
 \end{aligned}$$

We therefore get two possible solutions: $\boxed{g(x) = -\frac{2}{3} + \sqrt{\frac{3x - 5}{9}}}$ and $\boxed{g(x) = -\frac{2}{3} - \sqrt{\frac{3x - 5}{9}}}$

Solution 2: We directly solve $3g(x)^2 + 4g(x) + 3 = x$, which is equivalent to $3g(x)^2 + 4g(x) + (3 - x) = 0$, using the quadratic formula.

$$\begin{aligned}
 g(x) &= \frac{-8 \pm \sqrt{16 - 4 \cdot 3 \cdot (3 - x)}}{6} \\
 &= \frac{-8 \pm \sqrt{-20 + 12x}}{6} \\
 &= \frac{-4 \pm \sqrt{3x - 5}}{3}
 \end{aligned}$$

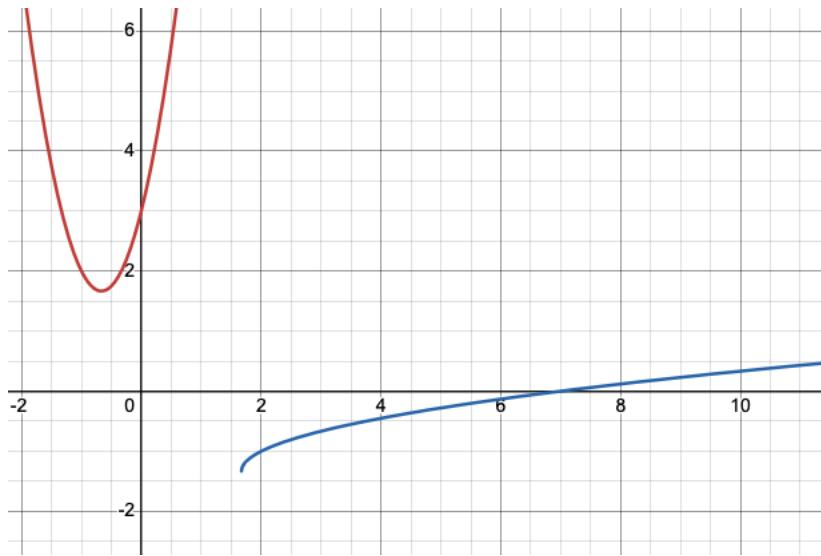
We therefore get two possible solutions for $g(x)$, similar to the previous solution.

- What are the domain and range of $g(x)$?

Solution: For this question we consider the ‘positive’ branch, i.e. $g(x) = \frac{-4 + \sqrt{3x - 5}}{3}$. The function $g(x)$ is defined if and only if $3x - 5 \geq 0$, so the domain is $x \geq \frac{5}{3}$, alternatively written as $x \in [\frac{5}{3}, \infty)$. The range is the set of values $g(x)$ can take on. Since the square root is always positive, we have $g(x) \geq -\frac{4}{3}$, so the range is $[-\frac{4}{3}, \infty)$.

- Draw the graphs of both $y = f(x)$ and $y = g(x)$.

Solution:



Bonus question: Cube roots and beyond

1. (2) Think about how you could adapt the decimal method to calculate *cube roots*. Use this method to calculate $\sqrt[3]{2}$ to 3 decimal places. I've included the first step below to get you started.³

Solution:

$$\begin{array}{r}
 1. \quad 2 \quad 5 \quad 9 \dots \\
 \hline
) \quad 2. \, 000 \, 000 \, 000 \dots \\
 - \quad 1 \\
 \hline
 1 \quad 000 \\
 - \quad 600 \quad (= 3 \cdot 10^2 \cdot 2) \\
 - \quad 120 \quad (= 3 \cdot 10 \cdot 2^2) \\
 - \quad 8 \quad (= 2^3) \\
 \hline
 272 \, 000 \\
 216 \, 000 \quad (= 3 \cdot 120^2 \cdot 5) \\
 9 \, 000 \quad (= 3 \cdot 120 \cdot 5^2) \\
 125 \quad (= 5^3) \\
 \hline
 46 \, 875 \, 000 \\
 42 \, 187 \, 500 \quad (= 3 \cdot 1250^2 \cdot 9) \\
 303 \, 750 \quad (= 3 \cdot 1250 \cdot 9^2) \\
 729 \quad (= 9^3) \\
 \hline
 4 \, 383 \, 021 \\
 \vdots
 \end{array}$$

³Doing this by hand is computation-heavy, and requires multiplying 3-digit integers along the way. You can use a calculator to help you.

2. (3) Can you describe an algorithm to calculate $\sqrt[n]{x}$ for any whole number n ? What about $x^{m/n}$ for any whole numbers m and n ? (Remember that fractional exponents are defined by $x^{m/n} = (\sqrt[n]{x})^m$.)

Solution: For $\sqrt[n]{x}$, we could extend the same decimal method above to solve for successive digits, by using the coefficients in the expansion $(a + b)^n$. For example, suppose that A is an approximation to $\sqrt[n]{x}$ to the first $i - 1$ digits after the decimal point, and $R = x - A^n$ denotes the remainder. We want to solve for the i -th digit d_i , using the equation

$$(A + \frac{d_i}{10^i})^n - A^n < R$$

and maximizing d_i . The coefficients in this expansion go $1, n, \frac{n(n-1)}{2}, \dots$, and typically you'd find that it is enough to just use the first two terms, i.e. maximize d_i according to the constraint $n \cdot \frac{d_i}{10^i} \cdot A^{n-1} < R$.

To recover $x^{m/n}$, we just raise our result to the m -th power.

This method gets very computationally intensive as n gets larger, and so it is much more efficient to use a generalization of the fractional method (which we will get to once we discuss geometric series).