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Recap: definition of logarithms

Last class we defined logarithms. The base-b logarithm of a, denoted logb(a), is the unique number
satisfying blogb(a) = a. This definition only makes sense if b is a positive number not equal to 1, and
a > 0. We talked about a few properties of logarithms, such as

logb(b) = 1

logb(ac) = logb(a) + logb(c)

logb(a
c) = c · logb(a)

We then defined the natural logarithm of a, denoted ln(a), as the total area under the curve of y = 1
x

from x = 1 to x = a. We showed that this function satisfies ln(ac) = ln(a) + ln(c), and so it is a
logarithm. The base of this logarithm is called e: it’s the unique number such that the area under
the curve y = 1

x from x = 1 to x = e is equal to 1. Next class we’ll talk about how to calculate e
exactly.

Today we’ll talk about how to calculate logarithms.

The alternating harmonic series

So far, we have looked at a few sums of finite and infinite series. For example, two classes ago we
found a formula for the sum of an infinite geometric series with ratio r such that |r| < 1:

c+ cr + cr2 + cr3 + . . . =
c

1− r

This also held true for geometric series with negative ratio:

c− cr + cr2 − cr3 + . . . =
c

1 + r

On your homework, you looked at the harmonic sequence, which is the sequence 1, 1/2, 1/3, 1/4, 1/5, . . ..
In particular, one of the questions asked you to show that the infinite harmonic series
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does not converge to a finite value, by showing that the partial sum 1 + 1
2 + 1

3 + . . .+ 1
n ≈ ln(n).
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Today we consider the alternating harmonic series:

1.0 = 1

0.5 = 1− 1

2

0.8333 . . . = 1− 1

2
+
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3

0.5833 . . . = 1− 1
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− 1
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0.7833 . . . = 1− 1

2
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+

1

5
... =

...

Question: Does this infinite series reach a finite value? If so, what is it?

Here is a short snippet of code, written in the programming language Python, which calculates the
n-th partial sum of the alternating harmonic series.

def alternating_harmonic_series(n):

total = 0

for i in range(1, n+1):

total += ((-1)**(i-1)) / i

return total

For comparison, here is a similar snippet of code which calculates the n-th partial sum of the
harmonic series.

def alternating_harmonic_series(n):

total = 0

for i in range(1, n+1):

total += ((-1)**(i-1)) / i

return total

If you have access to a computer, this is a good chance to install Python and try running this
computation. You should observe that the sum appears to converge to 0.6931 . . ..

Sigma notation

This is a good opportunity to briefly introduce summation notation, also called sigma notation,
after the Greek letter Σ (analogous to S). We use it for writing large sums. The part to the right of
the Σ symbol tells us what terms we are summing in terms of an index (such as i), while the parts
above and below the Σ tell us the range over which the index varies. This structure is very similar
to the Python functions written above. Here are some examples, from which you can likely deduce
the general pattern.
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3 + 4 + 5 + . . .+ 13 =

13∑
i=3

i

6 + 8 + 10 + . . .+ 24 =

12∑
i=3

2i

1 + 4 + 9 + 16 + 25 + . . .+ 121 =

11∑
i=1

i2

1

1
− 1

2
+

1

3
− . . .− 1

30
=

30∑
i=1

(−1)i−1

i

For infinite sums, we place the symbol ∞ on top of the sum. For example,

1

1
− 1

2
+

1

3
− 1

4
+ . . . =

∞∑
i=1

(−1)i−1

i

Calculating logarithms

It turns out that the alternating harmonic series sums to ln(2). I.e.,

∞∑
i=1

(−1)i−1

i
=

1

1
− 1

2
+

1

3
− 1

4
+ . . . = ln(2)

Here’s a geometric proof of this fact.

Proof: By definition, ln(2) is equal to the area under the graph of y = 1
1+x from x = 1 to x = 2.

Let’s shift that graph to the left by 1, so that ln(2) is the area under the graph of y = 1
1+x from

x = 0 to x = 1.

1

1

2

3

y = 1
1+x

ln(2)

Next, recall from the formula for a geometric series that for every x such that |x| < 1,

1

1 + x
=

∞∑
i=0

(−x)i = 1− x+ x2 − x3 + x4 − . . .
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What this means is that the function 1
1+x is better and better approximated by the partial sums of

this function, i.e. f0(x) = 1, f1(x) = 1− x, f2(x) = 1− x+ x2, f3(x) = 1− x+ x2 − x3, etc, where

fn(x) in general means the function
n∑

i=0

(−x)i.

1

−1

1

2

3

y = 1
1+x

y = 1

y = 1− x

y = 1− x+ x2

y = 1− x+ x2 − x3

Let’s write an to mean the area under the graph of y = xn from x = 0 to x = 1. Then by summation
of areas, the area under the graph of fn(x) = 1− x+ x2 − x3 + . . .+ (−1)nxn from x = 0 to x = 1
is equal to a0 − a1 + a2 − a3 + . . .+ (−1)nan.

1

1 y = 1

a0

1

1 y = x

a1

1

1 y = x2

a2

1

1 y = x3

a3

1

1 y = x4

a3

1

1 y = x5

a5

It turns out that these values a0, a1, a2, . . . can be calculated explicitly. For example, a0 = 1 because
it is the area of a square with sidelengths 1, while a1 = 1

2 because it is the area of a right triangle
with legs of length 1 each. You showed in Question #5 of the last homework that a2 = 1

3 . In general,
it turns out that an = 1

n+1 , and this can be shown by methods similar to those in the homework
assignment (but it is not that easy!).
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This means that the area under the graph of fn(x) from x = 0 to x = 1 is equal to

n∑
i=0

(−1)i

i+ 1
= 1− 1

2
+

1

3
− 1

4
+ . . .+

(−1)n

n+ 1

and the area under the graph of f(x) = 1
1+x from x = 0 to x = 1 is equal to

∞∑
i=0

(−1)i

i+ 1
= 1− 1

2
+

1

3
− 1

4
+ . . .

Therefore, the alternating harmonic series sums to ln(2). ■

Calculating logarithms

A similar argument to the one given in the last section produces the following formula for computing
the natural logarithm when −1 < x < 1.

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . .

This is our primary tool for calculating logarithms. This formula converges quickly when x is close
to 0, because the individual terms x, x2/2, x3/3, x4/4, . . . shrink faster than the terms of a geometric
series with ratio x. Let’s demonstrate a quick example:

Question: Calculate ln(1.5) to two decimal places of accuracy.

We plug in x = 0.5 to get

ln(1.5) = 0.5− 0.52

2
+

0.53

3
− 0.54

4
+ . . .

We want to get an answer to two decimal places of accuracy, i.e. to within 0.01. Notice that
0.55

5 = 1
160 is smaller than 0.01. The terms after that one decrease faster than a geometric series of

ratio 0.5, so their sum is less than 1
160 . So we can get to within the desired accuracy using the finite

sum

0.5− 0.52

2
+

0.53

3
− 0.54

4
+

0.55

5
6 =

1

2
− 1

8
+

1

24
− 1

64
+

1

160
=

480− 120 + 40− 15 + 6

960
=

391

960
≈ 0.407
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