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Today’s class is a bit more theoretical, and introduces both geometric sequences and recurrence
relations. Both of these appear in many places in mathematics. Additionally, we’ll calculate a
formula for the sum of terms of a geometric sequence – called a geometric series – which is a tool
used heavily throughout mathematics, including within calculus.

It’s worth mentioning here that some of the objects you’ll see in the next few classes have continuous
analogues you may see in future calculus classes:

Discrete version Continuous version (calculus)

Arithmetic sequence Linear function
Geometric sequence Exponential function
Recurrence relation Differential equation

Summation Integral
Generating function∗ Laplace transform

Finite geometric series

Let’s start with a concrete example.

Question: Find a simple formula for the sum 1 + 2 + 4 + . . .+ 2n−1.

Listing out some examples:

1 + 2 = 3

1 + 2 + 4 = 7

1 + 2 + 4 + 8 = 15

1 + 2 + 4 + 8 + 15 = 31

1 + 2 + 4 + 8 + 15 + 32 = 63

We could guess the formula 1 + 2 + 4 + . . . + 2n−1 = 2n − 1. We can prove this formula with the
following algebraic trick. Let Sn denote the sum 1+2+4+. . .+2n−1. Then 2Sn = 2+4+8+. . .+2n.
When we subtract Sn, we observe a cancellation of terms:

( 2 + 4 + . . . + 2n−1 + 2n = 2Sn)
− (1 + 2 + 4 + . . . + 2n−1 = Sn)

−1 2n = Sn

The sequence 1, 2, 4, 8, . . . is an example of a geometric sequence, where each term is equal to the
previous term times a fixed factor. The factor, which is 2 in this case, is called the ratio. The sum
of the first n terms of this sequence is called a finite geometric series.

If we change the ratio to some arbitrary value r, so that our geometric sequence is 1, r, r2, r3, . . .,
then the same trick can be used to obtain a cancellation of terms, but multiplying by r instead of 2.
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r + r2 + . . . + rn−1 + rn = rSn

1 + r + r2 + . . . + rn−1 = Sn

−1 rn = (r − 1)Sn

We therefore obtain Sn = rn−1
r−1 . If the first term of the sequence is no longer 1, but is some other

initial value c, then the sum of the first n terms is given by

c+ cr + cr2 + . . . crn−1 =
c(rn − 1)

r − 1

This formula works for all values of r except for r = 1, including fractional and negative values. For
example,

1 + 3 + 9 + . . .+ 3n−1 =
3n − 1
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Of course, when r = 1, it’s easy to see that the sum is c · n.†

Infinite geometric series

Let’s consider the case of a value of r less than 1, e.g. r = 1
2 . What happens when we try to sum all

of the terms of the geometric sequence, i.e. S = 1 + 1
2 + 1

4 + 1
8 + . . .? This is an infinite geometric

series. Its value can be calculated by the same trick:
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Like before, we can replace the ratio by an arbitrary number r and use the same trick to calculate
the infinite sum. Note that this infinite sum only makes sense when −1 < r < 1, because the terms
must be shrinking in size in order for the infinite sum to converge.‡

In general, if the first term of the geometric sequence is c and the ratio is r for |r| < 1, then the
infinite sum is

c+ cr + cr2 + cr3 + . . . =
c(−1)

r − 1
=

c

1− r

This formula has a nice visualization, shown below for r = 2/3.

†Question: Why does the proof we used break down when r = 1?
‡It is possible to write down infinite sequences whose terms are shrinking in size, but where the infinite sum still does
not converge, for example 1 + 1
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The terms of the geometric series

(1− r) + r(1− r) + r2(1− r) + r3(1− r) + . . . = 1

correspond to the areas of the rectangles, which fill a square of sidelength 1.

Recurrence relations

We’re going to introduce some slightly more general notation to describe geometric series. Let

a0, a1, a2, a3, . . .

denote an infinite sequence of numbers. Then this is a geometric sequence with ratio r if and only if

an = ran−1 for all n ≥ 1

The equation relating an and an−1 is an example of a recurrence relation, or simply a recurrence. It
describes how to get each term of the sequence from the previous one. This information, plus the
first term a0, fully determines the geometric sequence.

We can use recurrence relations to describe other familiar sequences. For example, an arithmetic
sequence, which is one where the difference between consecutive terms is constant (for example,
1, 4, 7, 10, 13, . . ., is described by the recurrence relation

an = 2an−1 − an−2

This relation defines each term of the sequence in terms of the previous two terms. If you know the
first two terms of the sequence, you can sequentially construct all of the rest.

There’s a famous sequence, often known as the Fibonacci sequence§ defined by F0 = 0, F1 = 1, and
the recurrence relation Fn = Fn−1 + Fn−2. The sequence goes as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

A bit of numerical computation suggests that the successive ratios Fn

Fn−1
stabilize to a value of roughly

§This name comes from the Italian mathematician Leonardo Bonacci from the 1100s, but has been known in many
other cultures for ages before that. This sequence has a great deal of historical significance, and is worth reading
about.

3



1.618 . . ., known as the golden ratio, often written as ϕ. More precisely, this number is ϕ = 1+
√
5

2 .
That is, the Fibonacci sequence roughly approximates a geometric sequence with ratio ϕ.

Question: Can you find a general formula for the n-th Fibonacci number, Fn?

We’ll answer this question in the next class.
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