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Last class we introduced conic sections and looked at parabolas. In particular, we proved that for
any fixed constant m, the graph of the equation y = ma? is the set of points equidistance from the

point (0, ﬁ) and the line y = —ﬁ. In these notes, we’ll look at ellipses and hyperbolas.

Ellipses from stretching the unit circle

The equation 2% 4+ y? = 1 describes a circle centered at (0,0) with radius 1. This is because the
distance from (z,y) to (0,0) is equal to /22 + y?, and setting this equal to 1 and squaring yields
the equation above.

By the same reasoning, the equation to describe a circle centered at (0,0) with radius r, for any
fixed r > 0, is 22 + y? = r2. Another way to see this is to take the unit circle and stretch it by a
factor of r in both the z-direction and y-direction, by applying the substitutions z +— £ and y +— £,
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yielding the equation (;)2 + (%)2 =1, which is equivalent to 22 + y2 = r2.
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Figure 1: Stretching a unit circle by different factors in the z and y directions produces an ellipse.
When the two factors are equal, this ellipse is a circle.

If you wanted to stretch the unit circle by a different ratio in each direction, so that the horizontal

radius is @ and the vertical radius is b, for some different numbers a and b, you would take the
equation z2 4+ y? = 1 and substitute = — £ and y — ¥ to get the equation (%)2 + (%)2 = 1. This is
an ellipse. The shortest radius is called the minor radius and the longest is called the major radius.

When the two have the same length, the ellipse is a circle.



Finding the foci of an ellipse

Suppose you are given two points P; and P, with distance ¢ between them, and another number d
such that d > c¢. Consider the set of points @) such that the sum of the lengths of P;Q and P»(Q is
equal to d. One way you can draw this is by placing thumbtacks at P; and P, placing a loop of
string with length ¢ + d around the two thumbtacks and pulling it taut with a pencil at the third
point, and then moving the pencil while keeping the string taut.

Figure 2: Drawing an ellipse as the set of points whose summed distances to P; and P is fixed.

Surprisingly, it turns out that this procedure makes an ellipse. Let’s pause for a moment to think
about why this is surprising. It’s that the first procedure of stretching a circle produces a kind of
oblong, round shape, and you can convince yourself that this second procedure of tracing a point
whose summed-distances to two fixed points also produces some kind of round shape which is longer
along the line passing through the foci. But it’s not obvious at all these these should be the same
shape!

Figure 3: It’s possible to have different curved shapes which intersect the x-axis and y-axis at the
same points.

Why are these the same? We will show that these two characterizations are equivalent in a moment,

but first let’s assume we know this. Consider the ellipse fl—z + z—j = 1, and suppose its foci are at

(¢,0) and (—c,0) for some number c¢. We will calculate ¢ and the summed distance in terms of a
and b.

e The point (a,0) lies on the ellipse, and the sum of the distances from this point to the two foci
equals (a — ¢) + (a + ¢) = 2a. Therefore, the summed distance is equal to 2a.



e The point (0,b) lies on the ellipse, and the sum of the distances from this point to the two
foci equals Vb2 + 2 + Vb2 + 2 = 202 + ¢2. Therefore, Vb2 + ¢2 = a, which implies that
c=+Va? — b

Now we’ll prove the following proposition.

Proposition: Let a > b. The shape described by the equation (%)2 + (%)2 = 1 is the set of points
whose summed-distance to the two foci (va? — b2,0) and (—v/a? — b2,0) is equal to 2a.

Proof: For simplicity of notation, let ¢ denote the quantity va? — b2. Let (z,y) be a point on the
graph of (%)2 + (%)2 = 1. Call the sum of its distances to the two foci D. Then

D=+/(z—c)2+y2+/(z+)? +y2

We will perform a sequence of algebraic steps to clear the square roots and try to get a better
expression for D.
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Substituting ¢? = a? — b? (which we know), and the guess D = 2a yields
16a* — 4a®(42% + 4a? — 40 + 4y*) + 1622 (a® — b*) =0

at — a2 — a* + a?b? — a2y? + 2% — 222 = 0
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which is the equation defining the ellipse. Hence, D = 2a holds, for any values of x and y. B
Lastly, ellipses satisfy two other properties which are highly analogous to parabolaSB
e Suppose that the summed-distance is equal to d, and draw the circle centered at one focus

with radius d. Then every point on the ellipse is equidistant from the circle and the other
focus.

e Pick any point P on the ellipse, and draw the tangent line at P. Then the segments connecting

1From the standpoint of projective geometry, a parabola is just an ellipse with one focus placed on the line at infinity.



Figure 4: For any point on the ellipse (drawn in black), its distance to the focus on the right and
its distance to the circle of radius d are equal. The three colored trajectories within the ellipse meet
the ellipse at equal angles.

P to the two foci meet this line at equal and opposite angles of incidence.

Hyperbolas

We briefly mention a few properties of hyperbolas, which can be proven by the same techniques used
2 2
for ellipses. Just as the equation 2—; + % =1 defines an ellipse, the equation i—z — %7 = 1 defines a

hyperbola with foci on the x-axis at (£va? + b2,0) (while v %j = 1 has foci on the y-axis). A

a?
hyperbola has the property that every point on the hyperbola has the difference of its distances to
the two foci equal to 2a.

Figure 5: Two hyperbolas shown in red and blue, with their foci accordingly displayed.



