Omega HW #2 - Conic sections

Krishanu Sankar

October 5, 2025

We explore some properties of parabolas using the tools of two-dimensional coordinate geometry. Remember that the distance between two points in the plane can be calculated using the Pythagorean theorem. For example, the distance between (3,5) and (-2,7) is equal to $\sqrt{(3-(-2))^2+(5-7)^2} = \sqrt{25+4} = \sqrt{29}$.

Parabolas

A parabola is the set of points in two-dimensional space that are of equal distance from a point (called the focus) and line (called the directrix). The point of the parabola that is closest to the directrix is called the vertex, and the focal length is the distance between the focus and the vertex.

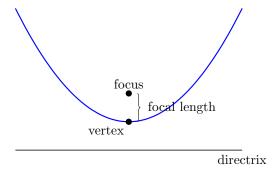


Figure 1: The parabola is shown in blue. All other components are labeled. The focal length is also equal to the distance from the vertex to the directrix.

For example, the parabola $y=x^2$ has its focus as $(0,\frac{1}{4})$, its directrix at $y=-\frac{1}{4}$, vertex at (0,0), and focal length equal to $\frac{1}{4}$.

In general, the graph of a quadratic equation $y = ax^2 + bx + c$, for constants a, b, c with $a \neq 0$, is a parabola whose directrix is horizontal. You'll find formulas for the vertex, focus, and directrix of such a parabola in the questions below.

- 1. (1) Calculate the vertex, focus, and directrix of the parabola $y-3=x^2$.
- 2. (1) Calculate the vertex, focus, and directrix of the parabola $y-3=(x+2)^2$.
- 3. (1) Consider the parabola $y = 5x^2$. You'll calculate the focal length, which we'll call m.

¹ Hint: You can check your answer by picking a few points on the parabola; e.g. $(0,3), (1,4), (2,7), \ldots$ and calculating their distance to both the focus and the directrix. It turns out that checking just two points is sufficient. (why?)

- (a) Sketch a graph of this parabola. Where is its vertex? Where are the focus and directrix, in terms of m?
- (b) Draw a horizontal line passing through the focus and mark the points where it intersects the parabola. What are the coordinates of these points, in terms of m?
- (c) Pick one of the two points you found and calculate its distance to both the focus and the directrix, in terms of m.
- (d) Set these two distances equal, and use this equation to solve for m.
- 4. (2) Based on your reasoning in (3), give a general formula for the focal length m of the parabola $y = ax^2$, in terms of a. Then **prove** that every point on the parabola is equidistant from the focus (0, m) and the directrix y = -m, as follows (similar to the proof covered in class):
 - Pick an arbitrary point (x, ax^2) on the parabola.
 - Calculate the distance from (x, ax^2) to both the focus and the directrix. You should get an algebraic expressions which depends on both a and x.
 - Show that they are identical.
- 5. (2) Show that the vertex of the parabola $y = ax^2 + bx + c$ is at $\left(-\frac{b}{2a}, c \frac{b}{4a}\right)^2$.
- 6. (2) Give the focus and directrix for the parabola $y = ax^2 + bx + c^3$

Bonus: Reflective properties of parabolas

A parabolic mirror has two miraculous reflective properties.⁴

- A ray emanating from the focus in any direction will bounce off of the parabola going in a trajectory perpendicular to the directrix. (When a ray hits a parabolic mirror, the angle of the incoming trajectory and the outgoing trajectory make the same angle with the line tangent to the parabola at the point of impact.)
- Two different rays sent out from the focus in different directions at the same speed, after bouncing off the mirror, end up at exactly the same distance away from the directrix.

We'll sketch a proof of these two properties for the parabola $y=x^2$, whose focus is $(0,\frac{1}{4})$. You'll need to use two facts which we will encounter later in the course:

• The slope of the line tangent to the parabola $y = x^2$ at the point (a, b) has slope 2a.

² Hint: Rewrite the right-hand side of the equation using the following fact: $ax^2 + bx + \frac{b^2}{4a} = a(x + \frac{b}{2a})^2$.

³ Hint: Relate this parabola to the parabola $y = ax^2$ by a translation. You calculated the focal length of the parabola $y = ax^2$ in (4). Now use the coordinates of the vertex as calculated in (5).

⁴In optics, these two properties together imply that a parabolic mirror converts a spherical wave emanating from the focus, into a plane wave traveling orthogonal to the directrix, and vice versa. This is exactly why parabolic mirrors have the highest possible fidelity when used in reflecting telescopes, headlights, directional microphones, etc.

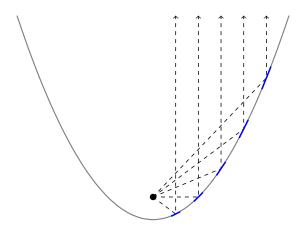


Figure 2: The five dashed trajectories shown all have the same total length. The tangent lines to the parabola at the points of incidence are shown in blue.

- If a line \mathcal{L} has slope m, and the line \mathcal{V} is a vertical line, then the reflection of \mathcal{V} over \mathcal{L} has slope $\frac{m^2-1}{2m}$.
- 7. (2) Draw the parabola $y = x^2$ and the line y = N for some large value of N. Pick a point (x, y) on the parabola with y < N, and calculate the distance from (x, y) to both the focus and to the line you drew. Show that the sum of these two distances is independent of the value of x which you picked.
- 8. (3) Calculate the slope of the line connecting (x, y) to the focus. Then use the two facts given above to prove that the angle between this line and the tangent line to the parabola at (x, y), is equal to the angle between the tangent line and the vertical line.

⁵This can be deduced from the addition formula for the tan(x) function.