Omega HW #1 - Calculating functions

Krishanu Sankar

September 21, 2025

Square roots

In class, we talked about two methods of calculating $\sqrt{2}$. In the "decimal" method, we considered the decimal representation $\sqrt{2} = 1.d_1d_2d_3d_4...$ and iteratively calculated d_1, d_2, d_3 , and so on. In the "fractional" method, we begin with an initial approximation x (e.g., x = 1), and repeated applied the transformation $x \mapsto \frac{1}{2}(x + \frac{2}{x})$ to get successively better approximations.

- 1. (1) Calculate $\sqrt{17}$ to at least 3 decimal places, using the decimal method.
- 2. (2) Calculate the first three fractional approximations of $\sqrt{17}$. (Hint: You will need to change the transformation you use.)
- 3. Let $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right)$.
 - (a) (1) Calculate $f(\sqrt{2})$.
 - (b) (1) Draw a sketch of y = f(x) for $1 \le x \le 2$. You can use a tool to help you, e.g.https://www.desmos.com/calculator. Indicate the following points in the graph:
 - The minimum value of the function.
 - The points (x, f(x)) for the first three x values in the fractional method (beginning with x = 1).
 - (c) (2) If x is a number in the interval [1,2], what can you say about the relative sizes of $|x-\sqrt{2}|$ and $|f(x)-\sqrt{2}|$, based on looking at this graph? Which is larger, and why?

Functions and inverses

Given a function f(x), its inverse $f^{-1}(x)$ (if it exists!) is a function such that

- $f^{-1}(f(x)) = x$ for all x in the domain of f, and
- $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} .
- 1. (1) Find the inverse of $f(x) = 4 \frac{3}{4}x$.
- 2. (2) Let $f(x) = 3x^2 + 4x + 3$.

- Find a function g(x) such that f(g(x)) = x. ¹
- What are the domain and range of g(x)?
- Draw the graphs of both y = f(x) and y = g(x).

Bonus question: Cube roots and beyond

1. (2) Think about how you could adapt the decimal method to calculate *cube roots*. Use this method to calculate $\sqrt[3]{2}$ to 3 decimal places. I've included the first step below to get you started. ²

$$\begin{array}{c|cccc}
1. & 2 & \dots \\
\hline
2.00000000... \\
-\frac{1}{1000} \\
-600 \\
-120 \\
-\underline{8} \\
\hline
272000
\end{array}$$

2. (3) Can you describe an algorithm to calculate $\sqrt[n]{x}$ for any whole number n? What about $x^{m/n}$ for any whole numbers m and n? (Remember that fractional exponents are defined by $x^{m/n} = (\sqrt[n]{x})^m$.)

 $[\]overline{{}^{1}Hint}$: Complete the square.

 $^{^{2}}$ Doing this by hand is computation-heavy, and requires multiplying 3-digit integers along the way. You can use a calculator to help you.