
MATH 220.201 CLASS 9 QUESTIONS

1. Prove that the equation x6 + x4 + 2x2 + 1 = 0 has no real solutions.

Direct Proof. We wish to show that 6 ∃x ∈ R, x6+x4+2x2+1 = 0. We will prove
the equivalent statement that ∀x ∈ R, x6 + x4 + 2x2 + 1 6= 0.
For any real number x,

x6 + x4 + 2x2 + 1 = (x3)2 + (x2)2 + 2x2 + 1 ≥ 0 + 0 + 2(0) + 1 = 1

Therefore, x6 + x4 + 2x2 + 1 ≥ 1. So x6 + x4 + 2x2 + 1 6= 0, as desired. �

Proof by Contradiction. Suppose for a contradiction that there exists a real num-
ber x such that x6 + x4 + 2x2 + 1 = 0. Then

−1 = x6 + x4 + 2x2 = (x3)2 + (x2)2 + 2x2 ≥ 0 + 0 + 2(0) = 0

because x is a real number. So −1 ≥ 0, which is a contradiction! Therefore, there
is no such x. �

2. Let x be a nonzero real number. If x+ 1
x
< 2, then x < 0.1

Note that in symbols, the statement is

∀x ∈ R s.t. x 6= 0, ((x+
1

x
< 2) =⇒ (x < 0))

Proof by Contradiction. Suppose that there exists x 6= 0 such that x+ 1
x
< 2 and

x ≥ 0. Then

x+
1

x
< 2 =⇒ x2 + 1 < 2x because x ≥ 0

=⇒ x2 − 2x+ 1 < 0

=⇒ (x− 1)2 < 0

But (x− 1)2 ≥ 0, because x− 1 ∈ R. Therefore we have a contradiction! �

1You can adapt your argument to prove the following well-known theorem.

Arithmetic Mean - Geometric Mean Inequality: For any positive real numbers x and y,√
xy ≤ x+y

2 .

Proof. Since
√
x−√y is a real number,

(
√
x−√y)2 ≥ 0 =⇒ x− 2

√
xy + y ≥ 0 =⇒ x+ y ≥ 2

√
xy =⇒ x+ y

2
≥ √xy

�

1
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Proof by Contrapositive. We show that if x ≥ 0, then x + 1
x
≥ 2. Suppose that

x ≥ 0. First, since x is assumed to be nonzero, it follows that x > 0. Then

(x− 1)2 ≥ 0 =⇒ x2 − 2x+ 1 ≥ 0

=⇒ x2 + 1 ≥ 2x

=⇒ x+
1

x
≥ 2 because x > 0

which completes the proof. �

3. Let x be an irrational number. Then there is no largest rational number y with
the following property: y ≤ x.

In symbols, the statement is saying that

∀x ∈ R−Q, 6 ∃y ∈ Q, (y ≤ x ∧ ∀z ∈ Q, (z ≤ x =⇒ z ≤ y))

Proof by Contradiction. Suppose for a contradiction that there is such an irra-
tional number x and a rational number y such that y ≤ x and y is the largest
among all rational numbers with this property. Since x is irrational and y is
rational, they are unequal, so y < x. Thus, x−y > 0 Then there is some positive
integer n such that x − y > 1

n
.2 Then x > y + 1

n
, and y + 1

n
is rational. So by

the assumption, y + 1
n
≤ y. Thus, 1

n
≤ 0. This is clearly false, so we have a

contradiction! �

Direct Proof. It su�ces to show that for any irrational x and for any rational y
such that y ≤ x, there exists some rational z such that y < z ≤ x. That is, we
are proving the equivalent statement

∀x ∈ R−Q,∀y ∈ Q, (y ≤ x =⇒ ∃z ∈ Q, (z ≤ x ∧ z > y))

Suppose that y is a rational number such that y ≤ x. Since x is irrational and
y is irrational, they are unequal, and so y < x. Thus, x − y > 0. Then, there
is some positive integer n such that x − y > 1

n
. Now take z = y + 1

n
. Clearly

z > y, z is rational (because it is the sum of two rational numbers), and it is
also true that x > z because x− y > 1

n
. Thus, we have constructed a valid z, as

desired. �

Use the following theorem in questions 4 and 5:

Intermediate Value Theorem: For every continuous function f on the closed
interval [a, b], and for every number k between f(a) and f(b), there is some

c ∈ [a, b] such that f(c) = k.

2The proof of this is delving into the axiomatic construction of the real numbers, as limits of Cauchy

sequences of rational numbers. For now I will justify it as follows: if x−y ≤ 1
n for every natural number

n, then this would mean that x− y ≤ lim
n→∞

1
n = 0. However, we've assumed that x− y > 0, so this is a

contradiction.
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4. • The equation x5 + 2x− 5 = 0 has a solution on the interval [1, 2].

Proof. Let f(x) = x5 + 2x − 5. The Intermediate Value Theorem tells us
that

For every number k between f(1) and f(2), there is some c ∈ [1, 2] such
that f(c) = k.

f(1) = 15 + 2(1)− 5 = −3 and f(2) = 25 + 2(2)− 5 = 31. The Intermediate
Value Theorem therefore implies

For every number k between -3 and 31, there is some c ∈ [1, 2] such that
f(c) = k.

Since 0 is between -3 and 31, it follows that there is some c ∈ [1, 2] such that
f(c) = 0. This is the desired statement. �

• The equation x5 − 2x− 5 = 0 has exactly one solution on the interval [1, 2].

Proof. Suppose there are two distinct real numbers c, d ∈ [1, 2] such that c5+2c−
5 = d5+2d−5 = 0. Then c5+2c = d5+2c. Either c > d or d > c, so without loss
of generality, c > d. Then c5 > d5 and 2c > 2d. Thus, c5 + 2c− 5 > d5 + 2d− 5.
We have a contradiction! �

5. Any polynomial equation f(x) = 0 of odd degree has a real number solution.
(Note: this proof is much more involved than anything you'll be expected to
prove at this point in the course.)

Proof. We begin by proving a lemma.

Lemma 0.1. Let f(x) be an odd-degree polynomial. Then there is some real

number a such that f(a) > 0, and some real number b such that f(b) < 0.

Proof of Lemma. Since f has odd degree, its degree is equal to 2k + 1 for some
nonnegative integer k. Then, by the de�nition of a polynomial, we can write

f(x) = a2k+1x
2k+1 + a2kx

2k + . . .+ a1x+ a0 =
2k+1∑
i=0

aix
i

for some real numbers a0, a1, . . . , a2k+1 such that a2k+1 6= 0. If the required
conclusion holds for a polynomial f(x), then it holds for the polynomial t·f(x) for
any nonzero real number t. Therefore, we may assume without loss of generality
that a2k+1 = 1. Now consider plugging in x = 1+ |a2k|+ |a2k−1|+ . . .+ |a1|+ |a0|.
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Then

x = 1 + |a2k|+ . . .+ |a0| ≥ 1 + |a2k|+ |
a2k−1

x
|+ . . .+ | a0

x2k
| because x ≥ 1

> |a2k|+ |
a2k−1

x
|+ . . .+ | a0

x2k
|

x2k+1 > |a2kx2k|+ |a2k−1x
2k−1|+ . . .+ |a0| because x is positive

x2k+1 > |a2kx2k + a2k−1x
2k−1 + . . .+ a0| (Triangle inequality)

Thus, it follows that x2k+1 + a2kx
2k + a2k−1x

2k−1 + . . . + a0 > 0. This is our
value `a'. To get our value `b', take x = −1 − |a2k| − . . . − |a0|, and use similar
reasoning. �

By the lemma, there exist real numbers a, b such that f(a) > 0 and f(b) < 0. 0
is therefore between f(a) and f(b), so by the Intermediate Value Theorem, there
is some real number c in the interval between a and b such that f(c) = 0. This
completes the proof. �


