MATH 220.201 CLASS 9 QUESTIONS

1. Prove that the equation $x^{6}+x^{4}+2 x^{2}+1=0$ has no real solutions.

Direct Proof. We wish to show that $\nexists x \in \mathbb{R}, x^{6}+x^{4}+2 x^{2}+1=0$. We will prove the equivalent statement that $\forall x \in \mathbb{R}, x^{6}+x^{4}+2 x^{2}+1 \neq 0$.

For any real number x,

$$
x^{6}+x^{4}+2 x^{2}+1=\left(x^{3}\right)^{2}+\left(x^{2}\right)^{2}+2 x^{2}+1 \geq 0+0+2(0)+1=1
$$

Therefore, $x^{6}+x^{4}+2 x^{2}+1 \geq 1$. So $x^{6}+x^{4}+2 x^{2}+1 \neq 0$, as desired.
Proof by Contradiction. Suppose for a contradiction that there exists a real number x such that $x^{6}+x^{4}+2 x^{2}+1=0$. Then

$$
-1=x^{6}+x^{4}+2 x^{2}=\left(x^{3}\right)^{2}+\left(x^{2}\right)^{2}+2 x^{2} \geq 0+0+2(0)=0
$$

because x is a real number. So $-1 \geq 0$, which is a contradiction! Therefore, there is no such x.
2. Let x be a nonzero real number. If $x+\frac{1}{x}<2$, then $x<0.1$

Note that in symbols, the statement is

$$
\forall x \in \mathbb{R} \text { s.t. } x \neq 0,\left(\left(x+\frac{1}{x}<2\right) \Longrightarrow(x<0)\right)
$$

Proof by Contradiction. Suppose that there exists $x \neq 0$ such that $x+\frac{1}{x}<2$ and $x \geq 0$. Then

$$
\begin{aligned}
x+\frac{1}{x}<2 & \Longrightarrow x^{2}+1<2 x \quad \text { because } x \geq 0 \\
& \Longrightarrow x^{2}-2 x+1<0 \\
& \Longrightarrow(x-1)^{2}<0
\end{aligned}
$$

But $(x-1)^{2} \geq 0$, because $x-1 \in \mathbb{R}$. Therefore we have a contradiction!

[^0]Arithmetic Mean-Geometric Mean Inequality: For any positive real numbers x and y,

$$
\sqrt{x y} \leq \frac{x+y}{2} .
$$

Proof. Since $\sqrt{x}-\sqrt{y}$ is a real number,

$$
(\sqrt{x}-\sqrt{y})^{2} \geq 0 \Longrightarrow x-2 \sqrt{x y}+y \geq 0 \Longrightarrow x+y \geq 2 \sqrt{x y} \Longrightarrow \frac{x+y}{2} \geq \sqrt{x y}
$$

Proof by Contrapositive. We show that if $x \geq 0$, then $x+\frac{1}{x} \geq 2$. Suppose that $x \geq 0$. First, since x is assumed to be nonzero, it follows that $x>0$. Then

$$
\begin{aligned}
(x-1)^{2} \geq 0 & \Longrightarrow x^{2}-2 x+1 \geq 0 \\
& \Longrightarrow x^{2}+1 \geq 2 x \\
& \Longrightarrow x+\frac{1}{x} \geq 2 \quad \text { because } x>0
\end{aligned}
$$

which completes the proof.
3. Let x be an irrational number. Then there is no largest rational number y with the following property: $y \leq x$.

In symbols, the statement is saying that

$$
\forall x \in \mathbb{R}-\mathbb{Q}, \nexists y \in \mathbb{Q},(y \leq x \wedge \forall z \in \mathbb{Q},(z \leq x \Longrightarrow z \leq y))
$$

Proof by Contradiction. Suppose for a contradiction that there is such an irrational number x and a rational number y such that $y \leq x$ and y is the largest among all rational numbers with this property. Since x is irrational and y is rational, they are unequal, so $y<x$. Thus, $x-y>0$ Then there is some positive integer n such that $\left.x-y>\frac{1}{n} \cdot\right]^{2}$ Then $x>y+\frac{1}{n}$, and $y+\frac{1}{n}$ is rational. So by the assumption, $y+\frac{1}{n} \leq y$. Thus, $\frac{1}{n} \leq 0$. This is clearly false, so we have a contradiction!

Direct Proof. It suffices to show that for any irrational x and for any rational y such that $y \leq x$, there exists some rational z such that $y<z \leq x$. That is, we are proving the equivalent statement

$$
\forall x \in \mathbb{R}-\mathbb{Q}, \forall y \in \mathbb{Q},(y \leq x \Longrightarrow \exists z \in \mathbb{Q},(z \leq x \wedge z>y))
$$

Suppose that y is a rational number such that $y \leq x$. Since x is irrational and y is irrational, they are unequal, and so $y<x$. Thus, $x-y>0$. Then, there is some positive integer n such that $x-y>\frac{1}{n}$. Now take $z=y+\frac{1}{n}$. Clearly $z>y, z$ is rational (because it is the sum of two rational numbers), and it is also true that $x>z$ because $x-y>\frac{1}{n}$. Thus, we have constructed a valid z, as desired.

Use the following theorem in questions 4 and 5 :
Intermediate Value Theorem: For every continuous function f on the closed interval $[a, b]$, and for every number k between $f(a)$ and $f(b)$, there is some $c \in[a, b]$ such that $f(c)=k$.

[^1]4. - The equation $x^{5}+2 x-5=0$ has a solution on the interval [1, 2].

Proof. Let $f(x)=x^{5}+2 x-5$. The Intermediate Value Theorem tells us that

For every number k between $f(1)$ and $f(2)$, there is some $c \in[1,2]$ such that $f(c)=k$.
$f(1)=1^{5}+2(1)-5=-3$ and $f(2)=2^{5}+2(2)-5=31$. The Intermediate Value Theorem therefore implies

For every number k between -3 and 31 , there is some $c \in[1,2]$ such that $f(c)=k$.

Since 0 is between -3 and 31 , it follows that there is some $c \in[1,2]$ such that $f(c)=0$. This is the desired statement.

- The equation $x^{5}-2 x-5=0$ has exactly one solution on the interval [1, 2].

Proof. Suppose there are two distinct real numbers $c, d \in[1,2]$ such that $c^{5}+2 c-$ $5=d^{5}+2 d-5=0$. Then $c^{5}+2 c=d^{5}+2 c$. Either $c>d$ or $d>c$, so without loss of generality, $c>d$. Then $c^{5}>d^{5}$ and $2 c>2 d$. Thus, $c^{5}+2 c-5>d^{5}+2 d-5$. We have a contradiction!
5. Any polynomial equation $f(x)=0$ of odd degree has a real number solution. (Note: this proof is much more involved than anything you'll be expected to prove at this point in the course.)

Proof. We begin by proving a lemma.
Lemma 0.1. Let $f(x)$ be an odd-degree polynomial. Then there is some real number a such that $f(a)>0$, and some real number b such that $f(b)<0$.

Proof of Lemma. Since f has odd degree, its degree is equal to $2 k+1$ for some nonnegative integer k. Then, by the definition of a polynomial, we can write

$$
f(x)=a_{2 k+1} x^{2 k+1}+a_{2 k} x^{2 k}+\ldots+a_{1} x+a_{0}=\sum_{i=0}^{2 k+1} a_{i} x^{i}
$$

for some real numbers $a_{0}, a_{1}, \ldots, a_{2 k+1}$ such that $a_{2 k+1} \neq 0$. If the required conclusion holds for a polynomial $f(x)$, then it holds for the polynomial $t \cdot f(x)$ for any nonzero real number t. Therefore, we may assume without loss of generality that $a_{2 k+1}=1$. Now consider plugging in $x=1+\left|a_{2 k}\right|+\left|a_{2 k-1}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|$.

Then

$$
\begin{aligned}
x=1+\left|a_{2 k}\right|+\ldots+\left|a_{0}\right| & \geq 1+\left|a_{2 k}\right|+\left|\frac{a_{2 k-1}}{x}\right|+\ldots+\left|\frac{a_{0}}{x^{2 k}}\right| & & \quad \text { because } x \geq 1 \\
& >\left|a_{2 k}\right|+\left|\frac{a_{2 k-1}}{x}\right|+\ldots+\left|\frac{a_{0}}{x^{2 k}}\right| & & \\
x^{2 k+1} & >\left|a_{2 k} x^{2 k}\right|+\left|a_{2 k-1} x^{2 k-1}\right|+\ldots+\left|a_{0}\right| & & \text { because } x \text { is positive } \\
x^{2 k+1} & >\left|a_{2 k} x^{2 k}+a_{2 k-1} x^{2 k-1}+\ldots+a_{0}\right| & & \text { (Triangle inequality) }
\end{aligned}
$$

Thus, it follows that $x^{2 k+1}+a_{2 k} x^{2 k}+a_{2 k-1} x^{2 k-1}+\ldots+a_{0}>0$. This is our value ' a '. To get our value ' b ', take $x=-1-\left|a_{2 k}\right|-\ldots-\left|a_{0}\right|$, and use similar reasoning.

By the lemma, there exist real numbers a, b such that $f(a)>0$ and $f(b)<0.0$ is therefore between $f(a)$ and $f(b)$, so by the Intermediate Value Theorem, there is some real number c in the interval between a and b such that $f(c)=0$. This completes the proof.

[^0]: ${ }^{1}$ You can adapt your argument to prove the following well-known theorem.

[^1]: ${ }^{2}$ The proof of this is delving into the axiomatic construction of the real numbers, as limits of Cauchy sequences of rational numbers. For now I will justify it as follows: if $x-y \leq \frac{1}{n}$ for every natural number n, then this would mean that $x-y \leq \lim _{n \rightarrow \infty} \frac{1}{n}=0$. However, we've assumed that $x-y>0$, so this is a contradiction.

