MATH 220.201 CLASS 9 QUESTIONS

1. Prove that the equation 2° + 2* + 222 + 1 = 0 has no real solutions.

Direct Proof. We wish to show that Ar € R, 2%+ 2%+ 222 +1 = 0. We will prove
the equivalent statement that Vo € R, 2% + 2% + 222 +1 #£ 0.
For any real number z,

4+t + 202+ 1= (2 + (2*) + 222 +1>0+0+20)+1=1
Therefore, 2% + 2% 4+ 222 +1 > 1. So 25 4+ 2* + 222 + 1 # 0, as desired. O

Proof by Contradiction. Suppose for a contradiction that there exists a real num-
ber x such that 2% + 2* + 222 + 1 = 0. Then

—1=a% 42"+ 227 = (23?2 + (2®)? + 222 >0+ 0+2(0) =0

because z is a real number. So —1 > 0, which is a contradiction! Therefore, there
is no such z. ([l

2. Let x be a nonzero real number. If x + % < 2, then z < O.

Note that in symbols, the statement is

Vr € R s.t. x;«éO,((x+é<2) — (2 <0))

Proof by Contradiction. Suppose that there exists x # 0 such that z —i—% < 2 and

z > 0. Then
x+i<2:>x2+1<2x because z > 0
= 2’ -20+1<0
— (z—1)><0
But (z — 1)? > 0, because z — 1 € R. Therefore we have a contradiction! O

You can adapt your argument to prove the following well-known theorem.

Arithmetic Mean - Geometric Mean Inequality: For any positive real numbers = and y,
Vry < %
Proof. Since \/x — \/y is a real number,

(Vr—y)?>0 = 2-2ay+y>0 = z+y>2/a7y = %—wzw/xy
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Proof by Contrapositive. We show that if x > 0, then z + % > 2. Suppose that
x > 0. First, since x is assumed to be nonzero, it follows that x > 0. Then

(z—-172>0 = 2°-22+1>0
= 2*+1>2

1
= x4+ - >2 because z > 0
x

which completes the proof. 0

3. Let x be an irrational number. Then there is no largest rational number y with
the following property: y < z.

In symbols, the statement is saying that

VieR-Q, AyeQ,(y<zAVzeQ, (<2 = 2<y))

Proof by Contradiction. Suppose for a contradiction that there is such an irra-
tional number x and a rational number y such that y < x and y is the largest
among all rational numbers with this property. Since x is irrational and y is
rational, they are unequal, so y < x. Thus, x —y > 0 Then there is some positive
integer n such that x —y > %ﬂ Then x > y + %, and y + % is rational. So by
the assumption, y + % < y. Thus, % < 0. This is clearly false, so we have a
contradiction! O

Direct Proof. It suffices to show that for any irrational x and for any rational y
such that y < z, there exists some rational z such that y < z < z. That is, we
are proving the equivalent statement

VieR-Q,VyeQ,(y<zx = F2€Q,(z<xAz>y))

Suppose that y is a rational number such that y < x. Since x is irrational and
y is irrational, they are unequal, and so y < x. Thus, v —y > 0. Then, there
is some positive integer n such that v —y > % Now take z = y + % Clearly
z > y, z is rational (because it is the sum of two rational numbers), and it is
also true that x > z because r — y > % Thus, we have constructed a valid z, as
desired. O

Use the following theorem in questions 4 and 5:

Intermediate Value Theorem: For every continuous function f on the closed
interval [a, b], and for every number k between f(a) and f(b), there is some
¢ € la,b] such that f(c) = k.

2The proof of this is delving into the axiomatic construction of the real numbers, as limits of Cauchy

sequences of rational numbers. For now I will justify it as follows: if x —y < % for every natural number

n, then this would mean that x — y < lim 711 = 0. However, we’'ve assumed that z — y > 0, so this is a
n—oo

contradiction.
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e The equation z° + 2z — 5 = 0 has a solution on the interval [1,2].

Proof. Let f(z) = x° + 2z — 5. The Intermediate Value Theorem tells us
that

For every number k between f(1) and f(2), there is some ¢ € [1, 2] such
that f(c) = k.

f(1)=1°+2(1) - 5= -3 and f(2) = 2°+2(2) — 5 = 31. The Intermediate
Value Theorem therefore implies

For every number k between -3 and 31, there is some ¢ € [1, 2] such that

fle) = k.

Since 0 is between -3 and 31, it follows that there is some ¢ € [1, 2] such that
f(c) = 0. This is the desired statement. O

e The equation z° — 2z — 5 = 0 has ezactly one solution on the interval [1,2].

Proof. Suppose there are two distinct real numbers ¢, d € [1, 2] such that ¢®+2c—
5=d°+2d—5=0. Then c®+2¢c = d°+2c. Either ¢ > d or d > ¢, so without loss
of generality, ¢ > d. Then ¢® > d® and 2¢ > 2d. Thus, ¢® +2c — 5 > d® + 2d — 5.
We have a contradiction! O

. Any polynomial equation f(x) = 0 of odd degree has a real number solution.
(Note: this proof is much more involved than anything you’ll be expected to
prove at this point in the course.)

Proof. We begin by proving a lemma.

Lemma 0.1. Let f(x) be an odd-degree polynomial. Then there is some real
number a such that f(a) > 0, and some real number b such that f(b) < 0.

Proof of Lemma. Since f has odd degree, its degree is equal to 2k 4 1 for some
nonnegative integer k. Then, by the definition of a polynomial, we can write

2%k+1
2%+1 2k i
f(x) = agp12®" ™ +agpr®™ + ...+ ayz +ap = E a;x"
i=0
for some real numbers ag,aq, ..., a1 such that agry; # 0. If the required

conclusion holds for a polynomial f(x), then it holds for the polynomial ¢- f(x) for
any nonzero real number ¢. Therefore, we may assume without loss of generality
that a1 = 1. Now consider plugging in x = 1+ |ags| + |aox_1|+ . . . + |a1| + |aol-
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Then
Qok— a
r =1+ |ag| +...+|ao] > 1+ |agy| + | 21;:1|+'”+‘x_20"?| because = > 1
A2k—1 Qo
> Joael + |2 44 120

2 > ag ™| + |agp_12®* | + ... + |ag] because z is positive

2 > Jag ™ 4 age 12T+ ag (Triangle inequality)
Thus, it follows that 2%t + ag2?* + agp_12%* ' + ... + a9 > 0. This is our
value ‘a’. To get our value ‘0, take v = —1 — |ag,| — ... — |ag|, and use similar
reasoning. U

By the lemma, there exist real numbers a, b such that f(a) > 0 and f(b) < 0. 0
is therefore between f(a) and f(b), so by the Intermediate Value Theorem, there
is some real number ¢ in the interval between a and b such that f(c) = 0. This
completes the proof. O



