
MATH 220.201 CLASS 6 SOLUTIONS

1. Let n ∈ Z. Prove or disprove: n is odd if and only if 4n3 − 2n+ 1 is odd.

Solution: The statement is false, because the implication `4n3− 2n+1 is odd
implies n is odd' is false. Here is a counterexample: when n = 2, 4n3 − 2n+ 1 =
29.1

De�nition 0.1 (Divisibility). Let a, b ∈ Z. a divides b (written a|b) if there is
some n ∈ Z such that b = an. Here are some properties you can assume. They
are a good warmup if you want practice with proofs.
• a|b ∧ b|c =⇒ a|c • a|c ∧ b|d =⇒ ab|cd
• a|b ∧ a|c =⇒ a|(bx+ cy)
• ∀a ∈ Z, a|0 • ∀a ∈ Z, 1|a

2. Prove or �nd a counterexample: For all a, b ∈ Z, if 3|ab, then (3|a or 3|b).

Proof. We prove the contrapositive, namely

∼ ((3|a) ∨ (3|b)) =⇒ ∼ (3|ab)
This is equivalent to prove that if 3 - a and 3 - b, then 3 - ab. If 3 - a, then either
a ≡ 1 (mod 3) or a ≡ 2 (mod 3). Similarly for b. So we divide it up into four
cases.

Case 1: a ≡ 1 (mod 3), b ≡ 1 (mod 3). Then a = 3x + 1 and b = 3y + 1 for
some x, y ∈ Z. Then

ab = (3x+ 1)(3y + 1) = 9xy + 3x+ 3y + 1 = 3(3xy + x+ y) + 1

Thus, ab ≡ 1 (mod 3) and so 3 - ab.

Case 2: a ≡ 1 (mod 3), b ≡ 2 (mod 3). Then a = 3x + 1 and b = 3y + 2 for
some x, y ∈ Z. Then

ab = (3x+ 1)(3y + 2) = 9xy + 6x+ 3y + 2 = 3(3xy + 2x+ y) + 2

Thus, ab ≡ 2 (mod 3) and so 3 - ab.

Case 3: a ≡ 2 (mod 3), b ≡ 1 (mod 3). This is similar to the last case.

Case 4: a ≡ 2 (mod 3), b ≡ 2 (mod 3). Then a = 3x + 2 and b = 3y + 2 for
some x, y ∈ Z. Then

ab = (3x+ 2)(3y + 2) = 9xy + 6x+ 6y + 4 = 3(3xy + 2x+ 2y + 1) + 1

Thus, ab ≡ 1 (mod 3) and so 3 - ab. �

1In fact, 4n3 − 2n+ 1 is always odd when n is an integer.
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3. Prove or �nd a counterexample: For all a, b ∈ Z, if 4|ab, then (4|a or 4|b).

Solution: There is a counterexample, namely a = 2 and b = 2. Then 4|ab,
but 4 - a and 4 - b.

De�nition 0.2 (Congruence). Let a, b ∈ Z and n ∈ N. a is congruent to b
modulo n if n divides a− b. We write this as

a ≡ b (mod n)

Here are some properties you can assume.
• a ≡ b (mod n) =⇒ a+ c ≡ b+ c (mod n) and ac ≡ bc (mod n)
• ∃r ∈ {0, 1, 2, . . . , n− 1}, a ≡ r (mod n)

4. Prove or disprove: For all n ∈ Z, 3|n or n2 ≡ 1 (mod 3).

Proof. We consider three possible cases: n ≡ 0, 1, or 2 (mod 3).

Case 1: n ≡ 0 (mod 3). Then 3|n.
Case 2: n ≡ 1 (mod 3). Then n2 ≡ 1 (mod 3).
Case 3: n ≡ 2 (mod 3). Then n2 ≡ 4 ≡ 1 (mod 3). �

5. Prove or disprove: For all n ∈ Z,

((2 - n) ∧ (3 - n)) =⇒ ∃m ∈ Z,mn ≡ 1 (mod 6)

Proof. We consider six possible cases: n ≡ 0, 1, 2, 3, 4, or 5 (mod 6).
Case 1: n ≡ 0 (mod 6). Then 2|n and so the implication is vacuously true.
Case 2: n ≡ 1 (mod 6). Then let m = 1. We then have

mn = n ≡ 1 (mod 6)

Case 3: n ≡ 2 (mod 6). Then 2|n and so the implication is vacuously true.
Case 4: n ≡ 3 (mod 6). Then 3|n and so the implication is vacuously true.
Case 5: n ≡ 4 (mod 6). Then 2|n and so the implication is vacuously true.
Case 6: n ≡ 5 (mod 6). Then let m = −1. We then have

mn = −n ≡ −5 ≡ 1 (mod 6)

�

6. Prove or disprove: For all n ∈ Z,

n3 6≡ 1 (mod 7) =⇒ (n3 ≡ 1 (mod 7)) ∨ (n ≡ 0 (mod 7))

Proof. We consider all seven possibilities for n modulo 7.
Case 1: n ≡ 0 (mod 7). Then the conclusion is true.
Case 2: n ≡ 1 (mod 7). Then n3 ≡ 13 ≡ 1 (mod 7) and the conclusion is true.
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Case 3: n ≡ 2 (mod 7). Then n3 ≡ 23 ≡ 8 ≡ 7 + 1 ≡ 1 (mod 7) and the
conclusion is true.
Case 4: n ≡ 3 (mod 7). Then n3 ≡ 33 ≡ 27 ≡ 4 · 7− 1 ≡ −1 (mod 7) and the

assumption is false.
Case 5: n ≡ 4 (mod 7). Then n3 ≡ 43 ≡ 64 ≡ 9 · 7 + 1 ≡ 1 (mod 7) and the

conclusion is true.
Case 6: n ≡ 5 (mod 7). Then n3 ≡ 53 ≡ 125 ≡ 18 · 7 − 1 ≡ −1 (mod 7) and

the assumption is false.
Case 7: n ≡ 6 (mod 7). Then n3 ≡ 63 ≡ 216 ≡ 31 · 7 − 1 ≡ −1 (mod 7) and

the assumption is false. �

7. Prove: For all n ∈ Z,

n ≡ 3 (mod 4) =⇒ ∼ (∃a, b ∈ Z, a2 + b2 = n)

Proof. We prove the contrapositive, namely we assume that ∃a, b ∈ Z, a2+b2 = n
and prove that n 6≡ 3 (mod 4). We consider four possible cases, based on the
parity of a and b.
Case 1: a even, b even. Then a2 ≡ 0 (mod 4) and b2 ≡ 0 (mod 4). Then

n ≡ 0 + 0 ≡ 0 (mod 4).
Case 2: a even, b odd. Then a2 ≡ 0 (mod 4) and b2 ≡ 1 (mod 4). Then

n ≡ 0 + 1 ≡ 1 (mod 4).
Case 3: a odd, b even. This is similar to the previous case.
Case 4: a odd, b odd. Then a2 ≡ 1 (mod 4) and b ≡ 1 (mod 4). Then

n ≡ 1 + 1 ≡ 2 (mod 4).
In all four cases, n 6≡ 3 (mod 4). Thus, this proves the conclusion. �

De�nition 0.3 (Relatively prime). Let a, b ∈ Z. a and b are relatively prime

(written gcd(a, b) = 1, or just (a, b) = 1) if

∀n ∈ N s.t. n ≥ 2, (n|a =⇒ n - b)

8. Prove that 5 and 12 are relatively prime.

Proof. We want to show the statement

∀n ∈ N s.t. n ≥ 2, (n|5 =⇒ n - 12)

Case 1: When n 6= 5, the implication is vacuously true, because n - 5.
Case 2: When n = 5, the implication is true because n - 12. �

9. Prove that if a ≡ 7 (mod 10), then a and 10 are relatively prime.

Proof. We will show the statement

∀n ∈ N s.t. n ≥ 2, (n|10 =⇒ n - a)
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If n 6= 2, 5, 10, then the implication is vacuously true. So assume we are in one
of these three cases.
Case 1: n = 2. Since a ≡ 7 (mod 10), a = 10x + 7 for some x ∈ Z. Then

a = 2(5x+ 3) + 1, and so a is odd. Therefore, 2 - a.
Case 2: n = 5. Since a ≡ 7 (mod 10), a = 10x + 7 for some x ∈ Z. Then

a = 5(2x+ 1) + 2, and so a ≡ 2 (mod 5). Therefore, 5 - a.
Case 3: n = 10. Since a ≡ 7 (mod 10), 10 - a.
In all three cases, n - a. This completes the proof. �


