MATH 220.201 CLASS 6 SOLUTIONS

1. Let $n \in \mathbb{Z}$. Prove or disprove: n is odd if and only if $4n^3 - 2n + 1$ is odd.

Solution: The statement is false, because the implication $4n^3 - 2n + 1$ is odd implies n is odd' is false. Here is a counterexample: when n = 2, $4n^3 - 2n + 1 = 29$.¹

Definition 0.1 (Divisibility). Let $a, b \in \mathbb{Z}$. a divides b (written a|b) if there is some $n \in \mathbb{Z}$ such that b = an. Here are some properties you can assume. They are a good warmup if you want practice with proofs.

- $a|b \wedge b|c \implies a|c$ • $a|c \wedge b|d \implies ab|cd$
- $a|b \wedge a|c \implies a|(bx + cy)$ • $\forall a \in \mathbb{Z}, a|0$ •
- $\forall a \in \mathbb{Z}, a | 0$ $\forall a \in \mathbb{Z}, 1 | a$
- 2. Prove or find a counterexample: For all $a, b \in \mathbb{Z}$, if 3|ab, then (3|a or 3|b).

Proof. We prove the contrapositive, namely

$$\sim ((3|a) \lor (3|b)) \implies \sim (3|ab)$$

This is equivalent to prove that if $3 \nmid a$ and $3 \nmid b$, then $3 \nmid ab$. If $3 \nmid a$, then either $a \equiv 1 \pmod{3}$ or $a \equiv 2 \pmod{3}$. Similarly for b. So we divide it up into four cases.

Case 1: $a \equiv 1 \pmod{3}, b \equiv 1 \pmod{3}$. Then a = 3x + 1 and b = 3y + 1 for some $x, y \in \mathbb{Z}$. Then

$$ab = (3x+1)(3y+1) = 9xy + 3x + 3y + 1 = 3(3xy + x + y) + 1$$

Thus, $ab \equiv 1 \pmod{3}$ and so $3 \nmid ab$.

Case 2: $a \equiv 1 \pmod{3}, b \equiv 2 \pmod{3}$. Then a = 3x + 1 and b = 3y + 2 for some $x, y \in \mathbb{Z}$. Then

$$ab = (3x + 1)(3y + 2) = 9xy + 6x + 3y + 2 = 3(3xy + 2x + y) + 2$$

Thus, $ab \equiv 2 \pmod{3}$ and so $3 \nmid ab$.

Case 3: $a \equiv 2 \pmod{3}, b \equiv 1 \pmod{3}$. This is similar to the last case.

Case 4: $a \equiv 2 \pmod{3}, b \equiv 2 \pmod{3}$. Then a = 3x + 2 and b = 3y + 2 for some $x, y \in \mathbb{Z}$. Then

$$ab = (3x+2)(3y+2) = 9xy + 6x + 6y + 4 = 3(3xy + 2x + 2y + 1) + 1$$

Thus, $ab \equiv 1 \pmod{3}$ and so $3 \nmid ab$.

¹In fact, $4n^3 - 2n + 1$ is always odd when n is an integer.

3. Prove or find a counterexample: For all $a, b \in \mathbb{Z}$, if 4|ab, then (4|a or 4|b).

Solution: There is a counterexample, namely a = 2 and b = 2. Then 4|ab, but $4 \nmid a$ and $4 \nmid b$.

Definition 0.2 (Congruence). Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. a is congruent to b modulo n if n divides a - b. We write this as

 $a \equiv b \pmod{n}$

Here are some properties you can assume.

- $a \equiv b \pmod{n} \implies a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$
- $\exists r \in \{0, 1, 2, \dots, n-1\}, a \equiv r \pmod{n}$

4. Prove or disprove: For all $n \in \mathbb{Z}$, $3|n \text{ or } n^2 \equiv 1 \pmod{3}$.

Proof. We consider three possible cases: $n \equiv 0, 1, \text{ or } 2 \pmod{3}$.

Case 1: $n \equiv 0 \pmod{3}$. Then 3|n. Case 2: $n \equiv 1 \pmod{3}$. Then $n^2 \equiv 1 \pmod{3}$. Case 3: $n \equiv 2 \pmod{3}$. Then $n^2 \equiv 4 \equiv 1 \pmod{3}$.

5. Prove or disprove: For all $n \in \mathbb{Z}$,

$$((2 \nmid n) \land (3 \nmid n)) \implies \exists m \in \mathbb{Z}, mn \equiv 1 \pmod{6}$$

Proof. We consider six possible cases: $n \equiv 0, 1, 2, 3, 4$, or 5 (mod 6). Case 1: $n \equiv 0 \pmod{6}$. Then 2|n and so the implication is vacuously true. Case 2: $n \equiv 1 \pmod{6}$. Then let m = 1. We then have

$$mn = n \equiv 1 \pmod{6}$$

Case 3: $n \equiv 2 \pmod{6}$. Then 2|n and so the implication is vacuously true. Case 4: $n \equiv 3 \pmod{6}$. Then 3|n and so the implication is vacuously true. Case 5: $n \equiv 4 \pmod{6}$. Then 2|n and so the implication is vacuously true. Case 6: $n \equiv 5 \pmod{6}$. Then let m = -1. We then have

$$mn = -n \equiv -5 \equiv 1 \pmod{6}$$

6. Prove or disprove: For all $n \in \mathbb{Z}$,

 $n^3 \not\equiv 1 \pmod{7} \implies (n^3 \equiv 1 \pmod{7}) \lor (n \equiv 0 \pmod{7})$

Proof. We consider all seven possibilities for $n \mod 0$ 7.

Case 1: $n \equiv 0 \pmod{7}$. Then the conclusion is true.

Case 2: $n \equiv 1 \pmod{7}$. Then $n^3 \equiv 1^3 \equiv 1 \pmod{7}$ and the conclusion is true.

Case 3: $n \equiv 2 \pmod{7}$. Then $n^3 \equiv 2^3 \equiv 8 \equiv 7 + 1 \equiv 1 \pmod{7}$ and the conclusion is true.

Case 4: $n \equiv 3 \pmod{7}$. Then $n^3 \equiv 3^3 \equiv 27 \equiv 4 \cdot 7 - 1 \equiv -1 \pmod{7}$ and the assumption is false.

Case 5: $n \equiv 4 \pmod{7}$. Then $n^3 \equiv 4^3 \equiv 64 \equiv 9 \cdot 7 + 1 \equiv 1 \pmod{7}$ and the conclusion is true.

Case 6: $n \equiv 5 \pmod{7}$. Then $n^3 \equiv 5^3 \equiv 125 \equiv 18 \cdot 7 - 1 \equiv -1 \pmod{7}$ and the assumption is false.

Case 7: $n \equiv 6 \pmod{7}$. Then $n^3 \equiv 6^3 \equiv 216 \equiv 31 \cdot 7 - 1 \equiv -1 \pmod{7}$ and the assumption is false.

7. Prove: For all $n \in \mathbb{Z}$,

 $n \equiv 3 \pmod{4} \implies \sim (\exists a, b \in \mathbb{Z}, a^2 + b^2 = n)$

Proof. We prove the contrapositive, namely we assume that $\exists a, b \in \mathbb{Z}, a^2 + b^2 = n$ and prove that $n \not\equiv 3 \pmod{4}$. We consider four possible cases, based on the parity of a and b.

Case 1: a even, b even. Then $a^2 \equiv 0 \pmod{4}$ and $b^2 \equiv 0 \pmod{4}$. Then $n \equiv 0 + 0 \equiv 0 \pmod{4}$.

Case 2: a even, b odd. Then $a^2 \equiv 0 \pmod{4}$ and $b^2 \equiv 1 \pmod{4}$. Then $n \equiv 0 + 1 \equiv 1 \pmod{4}$.

Case 3: a odd, b even. This is similar to the previous case.

Case 4: a odd, b odd. Then $a^2 \equiv 1 \pmod{4}$ and $b \equiv 1 \pmod{4}$. Then $n \equiv 1 + 1 \equiv 2 \pmod{4}$.

In all four cases, $n \not\equiv 3 \pmod{4}$. Thus, this proves the conclusion.

Definition 0.3 (Relatively prime). Let $a, b \in \mathbb{Z}$. a and b are relatively prime (written gcd(a, b) = 1, or just (a, b) = 1) if

 $\forall n \in \mathbb{N} \text{ s.t. } n \geq 2, (n|a \implies n \nmid b)$

8. Prove that 5 and 12 are relatively prime.

Proof. We want to show the statement

$$\forall n \in \mathbb{N} \text{ s.t. } n \geq 2, (n|5 \implies n \nmid 12)$$

Case 1: When $n \neq 5$, the implication is vacuously true, because $n \nmid 5$. Case 2: When n = 5, the implication is true because $n \nmid 12$.

9. Prove that if $a \equiv 7 \pmod{10}$, then a and 10 are relatively prime.

Proof. We will show the statement

$$\forall n \in \mathbb{N} \text{ s.t. } n \ge 2, (n|10 \implies n \nmid a)$$

If $n \neq 2, 5, 10$, then the implication is vacuously true. So assume we are in one of these three cases.

Case 1: n = 2. Since $a \equiv 7 \pmod{10}$, a = 10x + 7 for some $x \in \mathbb{Z}$. Then a = 2(5x + 3) + 1, and so a is odd. Therefore, $2 \nmid a$.

Case 2: n = 5. Since $a \equiv 7 \pmod{10}$, a = 10x + 7 for some $x \in \mathbb{Z}$. Then a = 5(2x+1) + 2, and so $a \equiv 2 \pmod{5}$. Therefore, $5 \nmid a$.

Case 3: $n \equiv 10$. Since $a \equiv 7 \pmod{10}$, $10 \nmid a$.

In all three cases, $n \nmid a$. This completes the proof.