MATH 220.201 CLASS 6 SOLUTIONS

1. Let $n \in \mathbb{Z}$. Prove or disprove: n is odd if and only if $4 n^{3}-2 n+1$ is odd.

Solution: The statement is false, because the implication ' $4 n^{3}-2 n+1$ is odd implies n is odd' is false. Here is a counterexample: when $n=2,4 n^{3}-2 n+1=$ 29.

Definition 0.1 (Divisibility). Let $a, b \in \mathbb{Z} . a$ divides b (written $a \mid b$) if there is some $n \in \mathbb{Z}$ such that $b=a n$. Here are some properties you can assume. They are a good warmup if you want practice with proofs.

- $a|b \wedge b| c \Longrightarrow a \mid c$
- $a|c \wedge b| d \Longrightarrow a b \mid c d$
- $a|b \wedge a| c \Longrightarrow a \mid(b x+c y)$
- $\forall a \in \mathbb{Z}, a \mid 0$
- $\forall a \in \mathbb{Z}, 1 \mid a$

2. Prove or find a counterexample: For all $a, b \in \mathbb{Z}$, if $3 \mid a b$, then $(3 \mid a$ or $3 \mid b)$.

Proof. We prove the contrapositive, namely

$$
\sim((3 \mid a) \vee(3 \mid b)) \Longrightarrow \sim(3 \mid a b)
$$

This is equivalent to prove that if $3 \nmid a$ and $3 \nmid b$, then $3 \nmid a b$. If $3 \nmid a$, then either $a \equiv 1(\bmod 3)$ or $a \equiv 2(\bmod 3)$. Similarly for b. So we divide it up into four cases.

Case 1: $a \equiv 1(\bmod 3), b \equiv 1(\bmod 3)$. Then $a=3 x+1$ and $b=3 y+1$ for some $x, y \in \mathbb{Z}$. Then

$$
a b=(3 x+1)(3 y+1)=9 x y+3 x+3 y+1=3(3 x y+x+y)+1
$$

Thus, $a b \equiv 1(\bmod 3)$ and so $3 \nmid a b$.
Case $2: a \equiv 1(\bmod 3), b \equiv 2(\bmod 3)$. Then $a=3 x+1$ and $b=3 y+2$ for some $x, y \in \mathbb{Z}$. Then

$$
a b=(3 x+1)(3 y+2)=9 x y+6 x+3 y+2=3(3 x y+2 x+y)+2
$$

Thus, $a b \equiv 2(\bmod 3)$ and so $3 \nmid a b$.
Case 3: $a \equiv 2(\bmod 3), b \equiv 1(\bmod 3)$. This is similar to the last case.
Case 4: $a \equiv 2(\bmod 3), b \equiv 2(\bmod 3)$. Then $a=3 x+2$ and $b=3 y+2$ for some $x, y \in \mathbb{Z}$. Then

$$
a b=(3 x+2)(3 y+2)=9 x y+6 x+6 y+4=3(3 x y+2 x+2 y+1)+1
$$

Thus, $a b \equiv 1(\bmod 3)$ and so $3 \nmid a b$.

[^0]3. Prove or find a counterexample: For all $a, b \in \mathbb{Z}$, if $4 \mid a b$, then $(4 \mid a$ or $4 \mid b)$.

Solution: There is a counterexample, namely $a=2$ and $b=2$. Then $4 \mid a b$, but $4 \nmid a$ and $4 \nmid b$.

Definition 0.2 (Congruence). Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. a is congruent to b modulo n if n divides $a-b$. We write this as

$$
a \equiv b \quad(\bmod n)
$$

Here are some properties you can assume.

- $a \equiv b(\bmod n) \Longrightarrow a+c \equiv b+c(\bmod n) a n d a c \equiv b c(\bmod n)$
- $\exists r \in\{0,1,2, \ldots, n-1\}, a \equiv r(\bmod n)$

4. Prove or disprove: For all $n \in \mathbb{Z}, 3 \mid n$ or $n^{2} \equiv 1(\bmod 3)$.

Proof. We consider three possible cases: $n \equiv 0,1$, or $2(\bmod 3)$.
Case 1: $n \equiv 0(\bmod 3)$. Then $3 \mid n$.
Case 2: $n \equiv 1(\bmod 3)$. Then $n^{2} \equiv 1(\bmod 3)$.
Case 3: $n \equiv 2(\bmod 3)$. Then $n^{2} \equiv 4 \equiv 1(\bmod 3)$.
5. Prove or disprove: For all $n \in \mathbb{Z}$,

$$
((2 \nmid n) \wedge(3 \nmid n)) \Longrightarrow \exists m \in \mathbb{Z}, m n \equiv 1 \quad(\bmod 6)
$$

Proof. We consider six possible cases: $n \equiv 0,1,2,3,4$, or $5(\bmod 6)$.
Case 1: $n \equiv 0(\bmod 6)$. Then $2 \mid n$ and so the implication is vacuously true.
Case 2: $n \equiv 1(\bmod 6)$. Then let $m=1$. We then have

$$
m n=n \equiv 1 \quad(\bmod 6)
$$

Case $3: n \equiv 2(\bmod 6)$. Then $2 \mid n$ and so the implication is vacuously true.
Case 4: $n \equiv 3(\bmod 6)$. Then $3 \mid n$ and so the implication is vacuously true.
Case 5: $n \equiv 4(\bmod 6)$. Then $2 \mid n$ and so the implication is vacuously true.
Case 6: $n \equiv 5(\bmod 6)$. Then let $m=-1$. We then have

$$
m n=-n \equiv-5 \equiv 1 \quad(\bmod 6)
$$

6. Prove or disprove: For all $n \in \mathbb{Z}$,

$$
n^{3} \not \equiv 1 \quad(\bmod 7) \Longrightarrow\left(n^{3} \equiv 1 \quad(\bmod 7)\right) \vee(n \equiv 0 \quad(\bmod 7))
$$

Proof. We consider all seven possibilities for n modulo 7 .
Case 1: $n \equiv 0(\bmod 7)$. Then the conclusion is true.
Case 2: $n \equiv 1(\bmod 7)$. Then $n^{3} \equiv 1^{3} \equiv 1(\bmod 7)$ and the conclusion is true.

Case $3: n \equiv 2(\bmod 7)$. Then $n^{3} \equiv 2^{3} \equiv 8 \equiv 7+1 \equiv 1(\bmod 7)$ and the conclusion is true.

Case 4: $n \equiv 3(\bmod 7)$. Then $n^{3} \equiv 3^{3} \equiv 27 \equiv 4 \cdot 7-1 \equiv-1(\bmod 7)$ and the assumption is false.

Case 5: $n \equiv 4(\bmod 7)$. Then $n^{3} \equiv 4^{3} \equiv 64 \equiv 9 \cdot 7+1 \equiv 1(\bmod 7)$ and the conclusion is true.

Case $6: n \equiv 5(\bmod 7)$. Then $n^{3} \equiv 5^{3} \equiv 125 \equiv 18 \cdot 7-1 \equiv-1(\bmod 7)$ and the assumption is false.

Case $7: n \equiv 6(\bmod 7)$. Then $n^{3} \equiv 6^{3} \equiv 216 \equiv 31 \cdot 7-1 \equiv-1(\bmod 7)$ and the assumption is false.
7. Prove: For all $n \in \mathbb{Z}$,

$$
n \equiv 3 \quad(\bmod 4) \Longrightarrow \sim\left(\exists a, b \in \mathbb{Z}, a^{2}+b^{2}=n\right)
$$

Proof. We prove the contrapositive, namely we assume that $\exists a, b \in \mathbb{Z}, a^{2}+b^{2}=n$ and prove that $n \not \equiv 3(\bmod 4)$. We consider four possible cases, based on the parity of a and b.

Case 1: a even, b even. Then $a^{2} \equiv 0(\bmod 4)$ and $b^{2} \equiv 0(\bmod 4)$. Then $n \equiv 0+0 \equiv 0(\bmod 4)$.

Case 2: a even, b odd. Then $a^{2} \equiv 0(\bmod 4)$ and $b^{2} \equiv 1(\bmod 4)$. Then $n \equiv 0+1 \equiv 1(\bmod 4)$.

Case 3: a odd, b even. This is similar to the previous case.
Case 4: a odd, b odd. Then $a^{2} \equiv 1(\bmod 4)$ and $b \equiv 1(\bmod 4)$. Then $n \equiv 1+1 \equiv 2(\bmod 4)$.

In all four cases, $n \not \equiv 3(\bmod 4)$. Thus, this proves the conclusion.

Definition 0.3 (Relatively prime). Let $a, b \in \mathbb{Z} . a$ and b are relatively prime (written $\operatorname{gcd}(a, b)=1$, or just $(a, b)=1$) if

$$
\forall n \in \mathbb{N} \text { s.t. } n \geq 2,(n \mid a \Longrightarrow n \nmid b)
$$

8. Prove that 5 and 12 are relatively prime.

Proof. We want to show the statement

$$
\forall n \in \mathbb{N} \text { s.t. } n \geq 2,(n \mid 5 \Longrightarrow n \nmid 12)
$$

Case 1: When $n \neq 5$, the implication is vacuously true, because $n \nmid 5$.
Case 2: When $n=5$, the implication is true because $n \nmid 12$.
9. Prove that if $a \equiv 7(\bmod 10)$, then a and 10 are relatively prime.

Proof. We will show the statement

$$
\forall n \in \mathbb{N} \text { s.t. } n \geq 2,(n \mid 10 \Longrightarrow n \nmid a)
$$

If $n \neq 2,5,10$, then the implication is vacuously true. So assume we are in one of these three cases.

Case 1: $n=2$. Since $a \equiv 7(\bmod 10), a=10 x+7$ for some $x \in \mathbb{Z}$. Then $a=2(5 x+3)+1$, and so a is odd. Therefore, $2 \nmid a$.

Case 2: $n=5$. Since $a \equiv 7(\bmod 10), a=10 x+7$ for some $x \in \mathbb{Z}$. Then $a=5(2 x+1)+2$, and so $a \equiv 2(\bmod 5)$. Therefore, $5 \nmid a$.

Case 3: $n=10$. Since $a \equiv 7(\bmod 10), 10 \nmid a$.
In all three cases, $n \nmid a$. This completes the proof.

[^0]: ${ }^{1}$ In fact, $4 n^{3}-2 n+1$ is always odd when n is an integer.

