MATH 220.201 CLASS 5 SOLUTIONS

1. Let $n \in \mathbb{Z}$. Prove that if n is odd, then $n^{2}-5 n+2$ is even.

Proof. If n is an odd integer, then there is some integer k such that $n=2 k+1$. Then

$$
\begin{aligned}
n^{2}-5 n+2 & =(2 k+1)^{2}-5(2 k+1)+2 \\
& =4 k^{2}+4 k+1-10 k-5+2 \\
& =4 k^{2}-6 k-2 \\
& =2\left(2 k^{2}-3 k-1\right)
\end{aligned}
$$

Since k is an integer, $2 k^{2}-3 k-1$ is an integer. Therefore, $n^{2}-5 n+2$ is an integer.
2. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if n^{2} is odd.

Proof. Let n be an integer. We first prove that if n is odd, then n^{2} is odd. If n is odd, then $n=2 k+1$ for some integer k. Then

$$
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1
$$

Since k is an integer, $2 k^{2}+2 k$ is an integer. Therefore, n^{2} is odd.
Now, we prove that if n^{2} is odd, then n is odd. We do so by proving the contrapositive: namely showing that if n is even, then n^{2} is even. If n is even, then $n=2 \ell$ for some integer ℓ. Then

$$
n^{2}=(2 \ell)^{2}=4 \ell^{2}=2\left(2 \ell^{2}\right)
$$

Since ℓ is an integer, $2 \ell^{2}$ is an integer. Therefore, n^{2} is even.
3. Let $n \in \mathbb{Z}$. Prove that if $7 n+4$ is even, then $3 n-11$ is odd.

Proof. We will show that ${ }^{2}$

$$
(7 n+4 \text { is even } \Longrightarrow n \text { is even }) \text { and (} n \text { is even } \Longrightarrow 3 n-11 \text { is odd })
$$

[^0]and deduce the conclusion.
Let's first prove the one on the left..3 We show it by proving the contrapositive. Namely, we show that if n is an odd integer, then $7 n+4$ is odd. If n is odd, then $n=2 k+1$ for some integer k. Then
$$
7 n+4=7(2 k+1)+4=14 k+11=2(7 k+5)+1
$$

Since k is an integer, $7 k+5$ is an integer. Therefore, $7 n+4$ is odd, as desired.
Now we show that if n is even, $3 n-11$ is odd. If n is even, then $n=2 \ell$ for some integer ℓ. Then

$$
3 n-11=3(2 \ell)-11=6 \ell-11=2(3 \ell-6)+1
$$

Since ℓ is an integer, $3 \ell-6$ is an integer. Therefore, $3 n-11$ is odd, as desired.

Proof. Here is an alternate proof. Suppose that $7 n-4$ is even. Then $7 n-4=2 k$ for some integer k. Therefore

$$
\begin{array}{rlrl}
3 n-11 & =7 n-4 n-4-7 & & =(7 n-4)-4 n-7 \\
& =2 k+2(-2 n-4)+1 & =2(k-2 n-4)+1
\end{array}
$$

4. Suppose that the following fact is known to be tru ${ }^{5}$

Lemma 0.1. For every $k \in \mathbb{Z}, k(k+1)$ is an even integer.
Prove that if n is any odd integer, then $n^{2}-1$ is a multiple of 8 .
Proof. Suppose that n is an odd integer. Then $n=2 k+1$ for some integer k. Then

$$
n^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k+1-1=4 k(k+1)
$$

k is an integer, so by the lemma, $k(k+1)$ is an even integer. Therefore, $k(k+1)=$ 2ℓ for some integer ℓ. Then $n^{2}-1=4(2 \ell)=8 \ell$. Therefore, $n^{2}-1$ is a multiple of 8 .

[^1]5 . Let $n \in \mathbb{Z}$. Prove that $n^{2}-3 n+9$ is odd.
Proof. If n is an integer, then n is even or n is odd. We consider these two cases separately.

Case $1, n$ is even: If n is even, then $n=2 k$ for some integer k. Then

$$
n^{2}-3 n+9=(2 k)^{2}-3(2 k)+9=4 k^{2}-6 k+9=2\left(2 k^{2}-3 k+4\right)+1
$$

Since k is an integer, $2 k^{2}-3 k+4$ is an integer. Therefore, $n^{2}-3 n+9$ is odd. Case 2, n is odd: If n is odd, then $n=2 k+1$ for some integer k. Then

$$
\begin{aligned}
n^{2}-3 n+9 & =(2 k+1)^{2}-3(2 k+1)+9 \\
& =4 k^{2}+4 k+1-6 k-3+9=2\left(2 k^{2}-k+3\right)+1
\end{aligned}
$$

Since k is an integer, $2 k^{2}-k+3$ is an integer. Therefore, $n^{2}-3 n+9$ is odd.

Proof. Here is an alternate proof. Notice that

$$
\begin{aligned}
n^{2}-3 n+9= & \left(n^{2}-3 n+2\right)+7=(n-1)(n-2)+7 \\
& =(n-2)(n-2+1)+7
\end{aligned}
$$

By Lemma, $(n-2)(n-2+1)$ is even. Therefore, it can be written in the form 2ℓ for some integer ℓ. Thus, $n^{2}-3 n+9=2 \ell+7=2(\ell+3)+1$. Since ℓ is an integer, $\ell+3$ is an integer, and therefore $n^{2}-3 n+9$ is odd.
6. Let $a, b \in \mathbb{Z}$. Prove that

$$
a b \text { is even } \Longleftrightarrow(a \text { is even }) \vee(b \text { is even })
$$

Proof. \Rightarrow : We first prove the forwards direction by proving its contrapositive ${ }^{6}$

$$
(a \text { is odd }) \wedge(b \text { is odd }) \Longrightarrow a b \text { is odd }
$$

If a and b are odd, then $a=2 k+1$ and $b=2 \ell+1$ for some integers k and ℓ. Then

$$
a b=(2 k+1)(2 \ell+1)=4 k \ell+2 k+2 \ell+1=2(2 k \ell+k+\ell)+1
$$

Since k and ℓ are integers, $2 k \ell+k+\ell$ is an integer. Therefore, $a b$ is odd.
\Leftarrow : We prove the backwards direction by considering two possible cases.
If a is even, then $a=2 k$ for some integer k. Then $a b=(2 k) b=2(k b)$. Since k and b are integers, $k b$ is an integer. Therefore, $a b$ is even.

If b is even, then $b=2 \ell$ for some integer ℓ. Then $a b=a(2 \ell)=2(a \ell)$. Since a and ℓ are integers, $a \ell$ is an integer. Therefore, $a b$ is even.

[^2]7. The following is a faulty proof. Explain what is wrong with it.

Proposition 0.2. If m is an even integer and n an odd integer, then $3 m+n+$ $m n-1$ is a multiple of 4 .

Proof. Let m be an even integer and n an odd integer. Then $m=2 k$ and $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
3 m+n+m n-1 & =3(2 k)+(2 k+1)+2 k(2 k+1)-1 \\
& =6 k+2 k+1+4 k^{2}+2 k-1 \\
& =4 k^{2}+8 k \\
& =4\left(k^{2}+2 k\right)
\end{aligned}
$$

Since $k^{2}+2 k$ is an integer, $3 m+n+m n-1$ is a multiple of 4 .
Solution: The issue is that if m is an arbitrary even integer and n is an arbitrary odd integer, then $m=2 k$ and $n=2 \ell+1$ where k and ℓ are not necessarily equal. In the faulty proof above, the same letter was used for both. The proposition is actually false: try $m=2$ and $n=3$.
8. Let $a, b, c, d, n \in \mathbb{Z}$. Prove that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d$ $(\bmod n)$, where the notation ' $\equiv(\bmod n)$ ' is defined below.

Definition 0.3. For integers a, b, n, if $a-b$ is a multiple of n, let us write this as

$$
\begin{gathered}
n \mid(a-b) ; ' n \text { divides } a-b \text { ', or } \\
a \equiv b(\bmod n) ; ' a \text { is congruent to } b \text { modulo } n ' .
\end{gathered}
$$

Proof. If $a \equiv b(\bmod n)$, then $a-b=k n$ for some integer k. Similarly $c-d=\ell n$ for some integer ℓ. Then $a=b+k n$ and $c=d+\ell n$, so

$$
\begin{aligned}
a c-b d & =(b+k n)(d+\ell n)-b d \\
& =b d+k d n+b \ell n+k \ell n^{2}-b d \\
& =(k d+b \ell+k \ell n) n
\end{aligned}
$$

Since k, ℓ, n are integers, $k d+b \ell+k \ell n$ is an integer. Therefore, $a c \equiv b d(\bmod n)$.

[^0]: ${ }^{1}$ Remember, we assumed n is an integer.
 ${ }^{2}$ A logical maneuver we are using here is transitivity, namely that for any statements (or open sentences) P, Q, R,

 $$
 ((P \Longrightarrow Q) \wedge(Q \Longrightarrow R)) \Longrightarrow(P \Longrightarrow R)
 $$

 If you want a fun exercise, you can either express the above statement entirely in terms of \wedge, \vee, \sim and show it's a tautology, or write a truth table for it.

[^1]: ${ }^{3}$ Note, we could prove these two in either order.
 ${ }^{4}$ This is a proof where the way you'd figure it out is the reverse of the finished product. The idea of this proof is that you prove that the difference between $7 n-4$ and $3 n-11$ is always odd.
 ${ }^{5}$ If you are curious how to prove this particular lemma, here is a rigorous proof.
 Proof. If k is an integer, then it is either an even integer, or it is an odd integer.
 If k is even, then $k=2 a$ for some integer a. Then $k(k+1)=2 a(2 a+1)=2\left(2 a^{2}+a\right)$. Since a is an integer, $2 a^{2}+a$ is an integer, and so $k(k+1)$ is even.

 If k is odd, then $k=2 b+1$ for some integer b. Then $k(k+1)=(2 b+1)(2 b+2)=2\left(2 b^{2}+3 b+1\right)$. Since b is an integer, $2 b^{2}+3 b+1$ is an integer, and so $k(k+1)$ is even.

[^2]: ${ }^{6}$ I have used De Morgan's law here.

