MATH 220.201 CLASS 5 SOLUTIONS

1. Let n € Z. Prove that if n is odd, then n? — 5n 4 2 is even.

Proof. If n is an odd integer, then there is some integer k£ such that n = 2k + 1.

Then
n®—5n+2=2k+1)*-52k+1)+2
=4k® + 4k + 1 — 10k — 54 2
= 4k* — 6k — 2
=2(2k* =3k — 1)
Since k is an integer, 2k? — 3k — 1 is an integer. Therefore, n? — 5n + 2 is an
integer. 0

2. Let n € Z. Prove that n is odd if and only if n? is odd.

Proof. Let n be an integer. We first prove that if n is odd, then n? is odd. If n
is odd, then n = 2k 4 1 for some integer k. Then
n®=(2k+1)> =4k + 4k +1 = 2(2k* + 2k) + 1

Since k is an integer, 2k? + 2k is an integer. Therefore, n? is odd.

Now, we prove that if n? is odd, then n is odd. We do so by proving the
contrapositive: namely showing that if n is even, then n? is even.ﬂ If n is even,
then n = 2¢ for some integer ¢. Then

n? = (20)* = 40* = 2(20%)

Since / is an integer, 2/ is an integer. Therefore, n? is even. O

3. Let n € Z. Prove that if Tn + 4 is even, then 3n — 11 is odd.
Proof. We will show thatf]

(Tn+ 4 is even = n is even) and (n is even = 3n — 11 is odd)

'Remember, we assumed n is an integer.
2A logical maneuver we are using here is transitivity, namely that for any statements (or open sen-
tences) P, Q, R,
(P = QN(Q = R)) = (P = R)
If you want a fun exercise, you can either express the above statement entirely in terms of A,V,~ and
show it’s a tautology, or write a truth table for it.
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and deduce the conclusion.

Let’s first prove the one on the left.E] We show it by proving the contrapositive.
Namely, we show that if n is an odd integer, then 7n +4 is odd. If n is odd, then
n = 2k + 1 for some integer k. Then

m+4=702k+1)+4=14k+11=2(Tk+5) +1

Since k is an integer, Tk + 5 is an integer. Therefore, 7n + 4 is odd, as desired.
Now we show that if n is even, 3n — 11 is odd. If n is even, then n = 2/ for
some integer ¢. Then

3n—11=3(20) —11 =6/ — 11 =2(3( — 6) + 1

Since ¢ is an integer, 3¢ — 6 is an integer. Therefore, 3n — 11 is odd, as desired.
O

Proof. Here is an alternate proof. Suppose that 7n —4 is even. Then Tn —4 = 2k
for some integer k. Therefore

In—11=Mm—-4n—-4-7 =(m—4)—4n -7
=%k +2(-2n—4)+1 =2(k—2n—4)+1

Since k and n are integers, k—2n —4 is an integer. Therefore, 3n—11 is oddﬁ U

4. Suppose that the following fact is known to be trud’
Lemma 0.1. For every k € Z, k(k + 1) is an even integer.
Prove that if n is any odd integer, then n? — 1 is a multiple of 8.

Proof. Suppose that n is an odd integer. Then n = 2k + 1 for some integer k.
Then

n?—1=02k+1)?—1=4k>+4k+1—1=4k(k +1)

k is an integer, so by the lemma, k(k+1) is an even integer. Therefore, k(k+1) =
2( for some integer ¢. Then n? — 1 = 4(2¢) = 8(. Therefore, n> — 1 is a multiple
of 8. 0

3Note, we could prove these two in either order.

4This is a proof where the way you’d figure it out is the reverse of the finished product. The idea of
this proof is that you prove that the difference between 7n — 4 and 3n — 11 is always odd.

°If you are curious how to prove this particular lemma, here is a rigorous proof.

Proof. If k is an integer, then it is either an even integer, or it is an odd integer.

If k is even, then k = 2a for some integer a. Then k(k + 1) = 2a(2a + 1) = 2(2a* + a). Since a is an
integer, 2a” + a is an integer, and so k(k + 1) is even.

If k is odd, then k = 2b + 1 for some integer b. Then k(k + 1) = (20 + 1)(2b +2) = 2(2b% + 3b + 1).
Since b is an integer, 2b® + 3b + 1 is an integer, and so k(k + 1) is even. O
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5. Let n € Z. Prove that n?> — 3n + 9 is odd.

Proof. 1f n is an integer, then n is even or n is odd. We consider these two cases
separately.

Case 1, n is even: If n is even, then n = 2k for some integer k. Then

n? —3n+9 = (2k)* —3(2k) +9 = 4k? — 6k +9 = 2(2k* — 3k +4) + 1

Since k is an integer, 2k? — 3k + 4 is an integer. Therefore, n? — 3n + 9 is odd.
Case 2, n is odd: If n is odd, then n = 2k + 1 for some integer k. Then

n*—3n+9=02k+1)>*-32k+1)+9
=4k +4k+1—-6k—3+9 =202k* —k+3)+1

Since k is an integer, 2k% — k + 3 is an integer. Therefore, n? —3n +9 is odd. [

Proof. Here is an alternate proof. Notice that
n—3n+9=m"-3n+2)+7=n—-1)n-2)+7
=n—-2)(n—2+1)47
By Lemma , (n — 2)(n — 2+ 1) is even. Therefore, it can be written in the form

2( for some integer £. Thus, n> —3n+9 =2(+7 =2({ +3) + 1. Since { is an
integer, ¢ + 3 is an integer, and therefore n? — 3n + 9 is odd. ([l

6. Let a,b € Z. Prove that

ab is even <= (a is even) V (b is even)
Proof. =: We first prove the forwards direction by proving its Contrapositiveﬁ
(a is odd) A (bis odd) = ab is odd

If a and b are odd, then a = 2k + 1 and b = 2¢ 4+ 1 for some integers k£ and /.
Then

ab=(2k+1)(20+1) =4kl + 2k + 20+ 1 =22kl + k + () + 1
Since k and ¢ are integers, 2k( + k + ¢ is an integer. Therefore, ab is odd.

<: We prove the backwards direction by considering two possible cases.

If @ is even, then a = 2k for some integer k. Then ab = (2k)b = 2(kb). Since k
and b are integers, kb is an integer. Therefore, ab is even.

If b is even, then b = 2¢ for some integer £. Then ab = a(2¢) = 2(al). Since a
and ¢ are integers, al is an integer. Therefore, ab is even. O

5T have used De Morgan’s law here.
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7. The following is a faulty proof. Explain what is wrong with it.

Proposition 0.2. If m is an even integer and n an odd integer, then 3m + n +
mn — 1 1s a multiple of 4.

Proof. Let m be an even integer and n an odd integer. Then m = 2k and
n = 2k + 1 for some k € Z. Therefore

3m+n+mn—1=302k)+ (2k+1)+2k(2k+1) -1
=6k +2k+1+4k* +2k — 1
= 4k* + 8k
= 4(k* + 2k)
Since k% + 2k is an integer, 3m + n + mn — 1 is a multiple of 4. O

Solution: The issue is that if m is an arbitrary even integer and n is an
arbitrary odd integer, then m = 2k and n = 2¢ 4+ 1 where k£ and ¢ are not
necessarily equal. In the faulty proof above, the same letter was used for both.
The proposition is actually false: try m = 2 and n = 3.

. Leta,b,c,d,n € Z. Prove thatif a = b (mod n) and ¢ = d (mod n), then ac = bd

(mod n), where the notation ‘= (mod n)’ is defined below.

Definition 0.3. For integers a,b, n, if a — b is a multiple of n, let us write this
as

n|(a —b) ; ‘n divides a — b’, or
a=b (mod n) ; ‘ais congruent to b modulo n’.

Proof. If a = b (mod n), then a —b = kn for some integer k. Similarly c—d = ¢n
for some integer /. Then a = b+ kn and ¢ = d + ¢n, so

ac —bd = (b+ kn)(d+ ¢n) — bd
= bd + kdn + bln + kfn? — bd
= (kd + bl + kln)n

Since k, ¢, n are integers, kd+ bl + kfn is an integer. Therefore, ac = bd (mod n).
0



