
MATH 220.201 CLASS 5 SOLUTIONS

1. Let n ∈ Z. Prove that if n is odd, then n2 − 5n+ 2 is even.

Proof. If n is an odd integer, then there is some integer k such that n = 2k + 1.
Then

n2 − 5n+ 2 = (2k + 1)2 − 5(2k + 1) + 2

= 4k2 + 4k + 1− 10k − 5 + 2

= 4k2 − 6k − 2

= 2(2k2 − 3k − 1)

Since k is an integer, 2k2 − 3k − 1 is an integer. Therefore, n2 − 5n + 2 is an
integer. �

2. Let n ∈ Z. Prove that n is odd if and only if n2 is odd.

Proof. Let n be an integer. We �rst prove that if n is odd, then n2 is odd. If n
is odd, then n = 2k + 1 for some integer k. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

Since k is an integer, 2k2 + 2k is an integer. Therefore, n2 is odd.
Now, we prove that if n2 is odd, then n is odd. We do so by proving the

contrapositive: namely showing that if n is even, then n2 is even.1 If n is even,
then n = 2` for some integer `. Then

n2 = (2`)2 = 4`2 = 2(2`2)

Since ` is an integer, 2`2 is an integer. Therefore, n2 is even. �

3. Let n ∈ Z. Prove that if 7n+ 4 is even, then 3n− 11 is odd.

Proof. We will show that2

(7n+ 4 is even =⇒ n is even) and (n is even =⇒ 3n− 11 is odd)

1Remember, we assumed n is an integer.
2A logical maneuver we are using here is transitivity, namely that for any statements (or open sen-

tences) P,Q,R,

((P =⇒ Q) ∧ (Q =⇒ R)) =⇒ (P =⇒ R)

If you want a fun exercise, you can either express the above statement entirely in terms of ∧,∨,∼ and
show it's a tautology, or write a truth table for it.
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and deduce the conclusion.
Let's �rst prove the one on the left.3 We show it by proving the contrapositive.

Namely, we show that if n is an odd integer, then 7n+4 is odd. If n is odd, then
n = 2k + 1 for some integer k. Then

7n+ 4 = 7(2k + 1) + 4 = 14k + 11 = 2(7k + 5) + 1

Since k is an integer, 7k + 5 is an integer. Therefore, 7n+ 4 is odd, as desired.
Now we show that if n is even, 3n − 11 is odd. If n is even, then n = 2` for

some integer `. Then

3n− 11 = 3(2`)− 11 = 6`− 11 = 2(3`− 6) + 1

Since ` is an integer, 3`− 6 is an integer. Therefore, 3n− 11 is odd, as desired.
�

Proof. Here is an alternate proof. Suppose that 7n−4 is even. Then 7n−4 = 2k
for some integer k. Therefore

3n− 11 = 7n− 4n− 4− 7 = (7n− 4)− 4n− 7

= 2k + 2(−2n− 4) + 1 = 2(k − 2n− 4) + 1

Since k and n are integers, k−2n−4 is an integer. Therefore, 3n−11 is odd.4 �

4. Suppose that the following fact is known to be true5

Lemma 0.1. For every k ∈ Z, k(k + 1) is an even integer.

Prove that if n is any odd integer, then n2 − 1 is a multiple of 8.

Proof. Suppose that n is an odd integer. Then n = 2k + 1 for some integer k.
Then

n2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k + 1− 1 = 4k(k + 1)

k is an integer, so by the lemma, k(k+1) is an even integer. Therefore, k(k+1) =
2` for some integer `. Then n2 − 1 = 4(2`) = 8`. Therefore, n2 − 1 is a multiple
of 8. �

3Note, we could prove these two in either order.
4This is a proof where the way you'd �gure it out is the reverse of the �nished product. The idea of

this proof is that you prove that the di�erence between 7n− 4 and 3n− 11 is always odd.
5If you are curious how to prove this particular lemma, here is a rigorous proof.

Proof. If k is an integer, then it is either an even integer, or it is an odd integer.
If k is even, then k = 2a for some integer a. Then k(k + 1) = 2a(2a+ 1) = 2(2a2 + a). Since a is an

integer, 2a2 + a is an integer, and so k(k + 1) is even.
If k is odd, then k = 2b+ 1 for some integer b. Then k(k + 1) = (2b+ 1)(2b+ 2) = 2(2b2 + 3b+ 1).

Since b is an integer, 2b2 + 3b+ 1 is an integer, and so k(k + 1) is even. �
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5. Let n ∈ Z. Prove that n2 − 3n+ 9 is odd.

Proof. If n is an integer, then n is even or n is odd. We consider these two cases
separately.

Case 1, n is even: If n is even, then n = 2k for some integer k. Then

n2 − 3n+ 9 = (2k)2 − 3(2k) + 9 = 4k2 − 6k + 9 = 2(2k2 − 3k + 4) + 1

Since k is an integer, 2k2 − 3k + 4 is an integer. Therefore, n2 − 3n+ 9 is odd.
Case 2, n is odd: If n is odd, then n = 2k + 1 for some integer k. Then

n2 − 3n+ 9 = (2k + 1)2 − 3(2k + 1) + 9

= 4k2 + 4k + 1− 6k − 3 + 9 = 2(2k2 − k + 3) + 1

Since k is an integer, 2k2− k+3 is an integer. Therefore, n2− 3n+9 is odd. �

Proof. Here is an alternate proof. Notice that

n2 − 3n+ 9 = (n2 − 3n+ 2) + 7 = (n− 1)(n− 2) + 7

= (n− 2)(n− 2 + 1) + 7

By Lemma , (n− 2)(n− 2 + 1) is even. Therefore, it can be written in the form
2` for some integer `. Thus, n2 − 3n + 9 = 2` + 7 = 2(` + 3) + 1. Since ` is an
integer, `+ 3 is an integer, and therefore n2 − 3n+ 9 is odd. �

6. Let a, b ∈ Z. Prove that

ab is even ⇐⇒ (a is even) ∨ (b is even)

Proof. ⇒: We �rst prove the forwards direction by proving its contrapositive6

(a is odd) ∧ (b is odd) =⇒ ab is odd

If a and b are odd, then a = 2k + 1 and b = 2` + 1 for some integers k and `.
Then

ab = (2k + 1)(2`+ 1) = 4k`+ 2k + 2`+ 1 = 2(2k`+ k + `) + 1

Since k and ` are integers, 2k`+ k + ` is an integer. Therefore, ab is odd.

⇐: We prove the backwards direction by considering two possible cases.
If a is even, then a = 2k for some integer k. Then ab = (2k)b = 2(kb). Since k

and b are integers, kb is an integer. Therefore, ab is even.
If b is even, then b = 2` for some integer `. Then ab = a(2`) = 2(a`). Since a

and ` are integers, a` is an integer. Therefore, ab is even. �

6I have used De Morgan's law here.
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7. The following is a faulty proof. Explain what is wrong with it.

Proposition 0.2. If m is an even integer and n an odd integer, then 3m+ n+
mn− 1 is a multiple of 4.

Proof. Let m be an even integer and n an odd integer. Then m = 2k and
n = 2k + 1 for some k ∈ Z. Therefore

(0.1)

3m+ n+mn− 1 = 3(2k) + (2k + 1) + 2k(2k + 1)− 1

= 6k + 2k + 1 + 4k2 + 2k − 1

= 4k2 + 8k

= 4(k2 + 2k)

Since k2 + 2k is an integer, 3m+ n+mn− 1 is a multiple of 4. �

Solution: The issue is that if m is an arbitrary even integer and n is an
arbitrary odd integer, then m = 2k and n = 2` + 1 where k and ` are not
necessarily equal. In the faulty proof above, the same letter was used for both.
The proposition is actually false: try m = 2 and n = 3.

8. Let a, b, c, d, n ∈ Z. Prove that if a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd
(mod n), where the notation `≡ (mod n)' is de�ned below.

De�nition 0.3. For integers a, b, n, if a− b is a multiple of n, let us write this

as

n|(a− b) ; `n divides a− b', or

a ≡ b (mod n) ; `a is congruent to b modulo n'.

Proof. If a ≡ b (mod n), then a− b = kn for some integer k. Similarly c−d = `n
for some integer `. Then a = b+ kn and c = d+ `n, so

ac− bd = (b+ kn)(d+ `n)− bd

= bd+ kdn+ b`n+ k`n2 − bd

= (kd+ b`+ k`n)n

Since k, `, n are integers, kd+ b`+k`n is an integer. Therefore, ac ≡ bd (mod n).
�


