MATH 220.201 CLASS 5 QUESTIONS

- 1. Let $n \in \mathbb{Z}$. Prove that if n is odd, then $n^2 5n + 2$ is even.
- 2. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if n^2 is odd.
- 3. Let $n \in \mathbb{Z}$. Prove that if 7n + 4 is even, then 3n 11 is odd.
- 4. Suppose that the following fact is known to be true

Lemma 0.1. For every $k \in \mathbb{Z}$, k(k+1) is an even integer.

Prove that if n is any odd integer, then $n^2 - 1$ is a multiple of 8.

- 5. Let $n \in \mathbb{Z}$. Prove that $n^2 3n + 9$ is odd.
- 6. Let $a, b \in \mathbb{Z}$. Prove that

ab is even $\iff (a \text{ is even}) \lor (b \text{ is even})$

7. The following is a faulty proof. Explain what is wrong with it.

Proposition 0.2. If m is an even integer and n an odd integer, then 3m + n + mn - 1 is a multiple of 4.

Proof. Let m be an even integer and n an odd integer. Then m = 2k and n = 2k + 1 for some $k \in \mathbb{Z}$. Therefore

(0.1)
$$3m + n + mn - 1 = 3(2k) + (2k + 1) + 2k(2k + 1) - 1$$
$$= 6k + 2k + 1 + 4k^{2} + 2k - 1$$
$$= 4k^{2} + 8k$$
$$= 4(k^{2} + 2k)$$

Since $k^2 + 2k$ is an integer, 3m + n + mn - 1 is a multiple of 4.

8. Let $a, b, c, d, n \in \mathbb{Z}$. Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$, where the notation ' $\equiv \pmod{n}$ ' is defined below.

Definition 0.3. For integers a, b, n, if a - b is a multiple of n, let us write this as

$$n|(a-b)$$
; 'n divides $a-b$ ', or
 $a \equiv b \pmod{n}$; 'a is congruent to b modulo n'.