MATH 220.201 CLASS 5 QUESTIONS

1. Let $n \in \mathbb{Z}$. Prove that if n is odd, then $n^{2}-5 n+2$ is even.
2. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if n^{2} is odd.
3. Let $n \in \mathbb{Z}$. Prove that if $7 n+4$ is even, then $3 n-11$ is odd.
4. Suppose that the following fact is known to be true

Lemma 0.1. For every $k \in \mathbb{Z}, k(k+1)$ is an even integer.
Prove that if n is any odd integer, then $n^{2}-1$ is a multiple of 8 .
5. Let $n \in \mathbb{Z}$. Prove that $n^{2}-3 n+9$ is odd.

6 . Let $a, b \in \mathbb{Z}$. Prove that

$$
a b \text { is even } \Longleftrightarrow(a \text { is even }) \vee(b \text { is even })
$$

7. The following is a faulty proof. Explain what is wrong with it.

Proposition 0.2. If m is an even integer and n an odd integer, then $3 m+n+$ $m n-1$ is a multiple of 4 .
Proof. Let m be an even integer and n an odd integer. Then $m=2 k$ and $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
3 m+n+m n-1 & =3(2 k)+(2 k+1)+2 k(2 k+1)-1 \\
& =6 k+2 k+1+4 k^{2}+2 k-1 \\
& =4 k^{2}+8 k \\
& =4\left(k^{2}+2 k\right)
\end{aligned}
$$

Since $k^{2}+2 k$ is an integer, $3 m+n+m n-1$ is a multiple of 4 .
8. Let $a, b, c, d, n \in \mathbb{Z}$. Prove that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d$ $(\bmod n)$, where the notation ' $\equiv(\bmod n)$ ' is defined below.
Definition 0.3. For integers a, b, n, if $a-b$ is a multiple of n, let us write this as

$$
\begin{gathered}
n \mid(a-b) ; ' n \text { divides } a-b \text { ', or } \\
a \equiv b(\bmod n) ; ' a \text { is congruent to } b \text { modulo } n ' \text { '. }
\end{gathered}
$$

