MATH 220.201 CLASS 4 QUESTIONS

(1) Show that $\sim(P \Longleftrightarrow Q) \equiv(P \wedge \sim Q) \vee(Q \wedge \sim P)$.

Solution: You can do this by a truth table in P and Q. Or, you can use the rules of logic to prove it, as follows (the middle step is De Morgan's law):

$$
\begin{aligned}
\sim(P \Longleftrightarrow Q) & \equiv \sim((P \Longrightarrow Q) \wedge(Q \Longrightarrow P)) \\
& \equiv \sim(P \Longrightarrow Q) \vee \sim(Q \Longrightarrow P) \\
& \equiv(P \wedge \sim Q) \vee(Q \wedge \sim P)
\end{aligned}
$$

(2) Let $P(n)$ be the open sentence

$$
P(n): \frac{5 n-3}{6} \text { is an integer }
$$

over the domain $n \in \mathbb{Z}$.
(a) Is the following true or false? $\exists n \in \mathbb{Z}, P(n)$. Explain.

Solution: True, because $P(3)$ is true. (i.e. $\frac{5 \cdot 3-3}{6}$ is an integer.)
(b) Is the following true or false? $\forall n \in \mathbb{Z}, P(n)$. Explain.

Solution: False, because $P(1)$ is false. (i.e. $\frac{5 \cdot 1-3}{6}$ is not an integer.)
(3) Rewrite the following using quantifiers:
(a) There is a real number such that $1 / y=y+1$.

Solution: $\exists y \in \mathbb{R},(1 / y=y+1)$.
(b) For every natural number z, there is a natural number w such that $z^{2}<w$.

Solution: $\forall z \in \mathbb{N},\left(\exists w \in \mathbb{N},\left(z^{2}<w\right)\right)$.
(4) Let A, B be subsets of a universal set U. Rewrite the following using quantifiers involving the elements. For example, $\forall x \in U, \ldots$
(a) $A \subset B$

Solution: $(\forall x \in A,(x \in B)) \wedge(\exists x \in B,(x \notin A))$.
(b) $A \cap B=\emptyset$

Solution: $\forall x \in A,(x \notin B)$. Another way is $\forall x \in U,((x \notin A) \vee(x \notin B))$.
(c) $A \not \subset B$

Solution: Just negate (a).

$$
\begin{aligned}
& \sim((\forall x \in A,(x \in B)) \wedge(\exists x \in B,(x \notin A))) \\
& \equiv(\not \forall x \in A,(x \in B)) \vee(\nexists x \in B,(x \notin A)) \\
& \equiv(\exists x \in A,(x \notin B)) \vee(\forall x \in B,(x \in A))
\end{aligned}
$$

(5) Is the following sentence true or false?

$$
\forall \epsilon \in \mathbb{R}_{>0}, \exists \delta \in \mathbb{R}_{>0},\left|(3+\delta)^{2}-3^{2}\right|<\epsilon
$$

Write its negation.
Solution: The sentence is true. Here is an argument why. It is enough to show that for any $\epsilon \in \mathbb{R}_{>0}$, there exists $\delta \in \mathbb{R}_{>0}$ such that $6 \delta+\delta^{2}<\epsilon$. If we pick δ such that $(7 \delta<\epsilon) \wedge\left(7 \delta^{2}<\epsilon\right)$, then $6 \delta+\delta^{2}<\epsilon$, because $6 \delta+\delta^{2}$ is between 7δ and $7 \delta^{2}$. δ can be chosen to be any real number less than $\min (\epsilon / 7, \sqrt{\epsilon / 7})$. Letting $\delta=\frac{1}{2} \min (\epsilon / 7, \sqrt{\epsilon / 7})$ suffices.

The negation is

$$
\exists \epsilon \in \mathbb{R}_{>0}, \forall \delta \in \mathbb{R}_{>0},\left|(3+\delta)^{2}-3^{2}\right| \geq \epsilon
$$

(6) For what values of x is the following open sentence (in x) true?

$$
\forall \epsilon \in \mathbb{R}_{>0}, \exists \delta \in \mathbb{R}_{>0},\left|(x+\delta)^{2}-x^{2}\right|<\epsilon
$$

How about this one?

$$
\exists \delta \in \mathbb{R}_{>0}, \forall \epsilon \in \mathbb{R}_{>0},\left|(x+\delta)^{2}-x^{2}\right|<\epsilon
$$

Solution: The first sentence is true for all x. For any x, one can use an argument identical to that in the previous question to find that $\delta=\left|\frac{1}{2} \min \left(\frac{\epsilon}{2 x+1}, \sqrt{\frac{\epsilon}{2 x+1}}\right)\right|$ satisfies the required condition.

The second sentence is false because its negation

$$
\forall \delta \in \mathbb{R}_{>0}, \exists \epsilon \in \mathbb{R}_{>0},\left|(x+\delta)^{2}-x^{2}\right| \geq \epsilon
$$

is true. For any δ, taking $\epsilon=\frac{1}{2}\left|\delta^{2}+2 x \delta\right|$ satisfies the required condition.

