MATH 220.201 CLASS 4 QUESTIONS

(1) Show that $\sim(P \Longleftrightarrow Q) \equiv(P \wedge \sim Q) \vee(Q \wedge \sim P)$.
(2) Let $P(n)$ be the open sentence

$$
P(n): \frac{5 n-3}{6} \text { is an integer }
$$

over the domain $n \in \mathbb{Z}$.
(a) Is the following true or false? $\exists n \in \mathbb{Z}, P(n)$. Explain.
(b) Is the following true or false? $\forall n \in \mathbb{Z}, P(n)$. Explain.
(3) Rewrite the following using quantifiers:
(a) There is a real number such that $1 / y=y+1$.
(b) For every natural number z, there is a natural number w such that $z^{2}<w$.
(4) Let A, B be subsets of a universal set U. Rewrite the following using quantifiers involving the elements. For example, $\forall x \in U, \ldots$
(a) $A \subset B$
(b) $A \cap B=\emptyset$
(c) $A \not \subset B$
(5) Is the following statement true or false?

$$
\forall \epsilon \in \mathbb{R}_{>0}, \exists \delta \in \mathbb{R}_{>0},\left|(3+\delta)^{2}-3^{2}\right|<\epsilon
$$

Write its negation.
(6) For what values of x is the following open sentence true?

$$
\forall \epsilon \in \mathbb{R}_{>0}, \exists \delta \in \mathbb{R}_{>0},\left|(x+\delta)^{2}-x^{2}\right|<\epsilon
$$

How about this one?

$$
\exists \delta \in \mathbb{R}_{>0}, \forall \epsilon \in \mathbb{R}_{>0},\left|(x+\delta)^{2}-x^{2}\right|<\epsilon
$$

