MATH 220.201 CLASS 3 QUESTIONS - SOLUTIONS

- (1) For each of the following sentences, say whether it is a *statement* or an *open* sentence. Can you state its negation?
 - (a) 5 is even or 3 is prime.

Solution: It is a statement, and its negation is '5 is not even and 3 is not prime.'

- (b) At least one of my two friends misplaced his/her homework assignment.

 Solution: It is a statement, and its negation is 'Neither of my two friends misplaced their homework assignment.'
- (c) For any polyhedron, the number of vertices plus the number of faces equals the number of edges plus 2.

Solution: It is a statement, and its negation is 'There is a polyhedron such that the number of vertices plus the number of faces is not equal to the number of edges plus 2.'

(d) If $x^4 = 1$, then x = 1 or x = -1.

Solution: It is an open sentence, because there is an unquantified variable.

(2) Construct a truth table in P, Q for the compound statement $(P \vee Q) \wedge \sim (P \wedge Q)^{-1}$

Solution: The values in the truth table are F, T, T, F.

(3) Construct a truth table in P, Q for the statement $P \implies Q$. Can you construct a compound statement with the same truth table using only \sim, \vee , and \wedge ?

Solution: The truth table is the same as that of $\sim P \vee Q$.

(4) Let $A = \{3, 6, 8, 9, 11\}$ and $B = \{6, 9, 10\}$. Find all sets S of integers such that the following statement holds true for all integers x.

$$(x \in S) \implies (x \in A) \land (x \in B)$$

Is there a set S such that $(x \in S) \iff (x \in A) \land (x \in B)$?

Solution: S satisfies the given open sentence for all integers x iff $S \in \mathcal{P}(A \cap B)$, i.e. $S \subseteq A \cap B = \{6, 9\}$. That is,

$$S = \emptyset, \{6\}, \{9\}, \{6, 9\}$$

satisfy the property $\forall x \in \mathbb{Z}, (x \in S) \implies (x \in A) \land (x \in B)$. When $S = \{6, 9\}$, we have

$$\forall x \in \mathbb{Z}, (x \in S) \iff (x \in A) \land (x \in B)$$

¹This is sometimes called 'exclusive or', or 'xor'.