MATH 220.201 CLASS 2 QUESTIONS - SOLUTIONS

1. Complement and Set Difference

Let U denote the universal set.
(1) Prove that $A-B=A \cap \bar{B}$.

Proof:

$$
\begin{aligned}
A-B & =\{x \mid x \in A \text { and } x \notin B\} \\
& =\{x \mid x \in A\} \cap\{x \mid x \notin B\} \\
& =A \cap \bar{B}
\end{aligned}
$$

(2) What is \bar{U} ? Answer: $\bar{U}=\emptyset$.
(3) (De Morgan's Laws) Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Solution: See the text. Note that this also holds for arbitrary unions and intersections, i.e. if I is any index set (even an infinite one!) then

$$
\overline{\bigcup_{i \in I} A_{i}}=\bigcap_{i \in I} \overline{A_{i}} \quad \overline{\bigcap_{i \in I} A_{i}}=\bigcup_{i \in I} \overline{A_{i}}
$$

(4) Find three sets A, B, and C such that $(A \cup B) \cap C \neq A \cup(B \cap C)$. (Hint: Draw Venn diagrams for $(A \cup B) \cap C$ and $A \cup(B \cap C)$.)

Solution: One can show that $(A \cup B) \cap C=A \cup(B \cap C)$ occurs if and only if $A \subseteq C$. So just take sets such that $A \subsetneq C$ and you'll find that $(A \cup B) \cap C \neq$ $A \cup(B \cap C)$.

2. Indexed Union and Intersection

(1) For each $k \in \mathbb{N}$, define $A_{k} \subset \mathbb{R}$ by $A_{k}=\left[\frac{1}{k+1}, \frac{1}{k}\right]$. What is $\bigcup_{k=1}^{\infty} A_{k}$?

Solution: $\bigcup_{k=1}^{\infty} A_{k}=(0,1]$. This is because

- Every A_{k}^{k} consists entirely of positive numbers less than or equal to 1 . Therefore, $\bigcup_{k=1}^{\infty} A_{k}$ consists only of positive numbers less than or equal to 1 , so $\bigcup_{k=1}^{\infty} A_{k} \subseteq(0,1]$.
- Every $x \in(0,1]$ is contained in at least one set A_{k}. Therefore, $(0,1] \subseteq \bigcup_{k=1}^{\infty} A_{k}$.
- $\bigcup_{k=1}^{\infty} A_{k} \subseteq(0,1]$ and $(0,1] \subseteq \bigcup_{k=1}^{\infty} A_{k}$ together imply that the two sets are equal.
(2) For each $k \in \mathbb{N}$, define $B_{k} \subset \mathbb{R}$ by $B_{k}=\left(-\frac{1}{k}, \frac{1}{k}\right)$. What is $\bigcap_{k=1}^{\infty} B_{k}$?

Solution: $B_{k}=\{0\}$. This is because

- $\{0\}$ is a subset of every B_{k}, and therefore $\{0\} \subseteq \bigcap_{k=1}^{\infty} B_{k}$.
- Suppose x is any nonzero real number. Then $|x|$ is a positive number, and so there is some $k \in \mathbb{Z}$ such that $\frac{1}{k} \leq|x|$. Then, $x \notin B_{k}$. Therefore, $x \notin \bigcap_{k=1}^{\infty} B_{k}$. This holds true for every nonzero real number x, so $\bigcap_{k=1}^{\infty} B_{k} \subseteq\{0\}$.
- $\{0\} \subseteq \bigcap_{k=1}^{\infty} B_{k}$ and $\bigcap_{k=1}^{\infty} B_{k} \subseteq\{0\}$ together imply that the two sets are equal.
(3) Let A and B be sets. Prove that $\bigcap_{b \in B}(A-\{b\})=A-B$.

Solution:

$$
\begin{aligned}
\bigcap_{b \in B}(A-\{b\}) & =\{x \mid x \in A-\{b\} \text { for all } b \in B\} \\
& =\{x \mid x \in A \text { and } x \neq b \text { for all } b \in B\} \\
& =\{x \mid x \in A \text { and } x \notin B\} \\
& =A-B
\end{aligned}
$$

3. Set Partitions and Cartesian Product

(1) List out the partitions of the set $\{1,2,3\}$. How many partitions are there for the set $\{1,2,3,4\}$? (Can you count them without listing them out?)

Solution: There are five.

$$
\{\{1,2,3\}\} ;\{\{1,2\},\{3\}\} ;\{\{1,3\},\{2\}\} ;\{\{2,3\},\{1\}\} ;\{\{1\},\{2\},\{3\}\}
$$

(2) Construct a partition of \mathbb{Z} into two sets.

Solution: Here are a few different ones.

$$
\begin{gathered}
\{\{0\},\{\ldots,-2,-1,1,2, \ldots\}\} \\
\{\{\ldots,-3,-2,-1\},\{0,1,2,3, \ldots\}\} \\
\{\{\ldots,-2,0,2,4, \ldots\},\{\ldots,-3,-1,1,3, \ldots\}\}
\end{gathered}
$$

In general, if $S \subseteq \mathbb{Z}$ is any subset of \mathbb{Z}, there's a partition

$$
\{S, \mathbb{Z}-S\}
$$

and every partition of \mathbb{Z} arises in this way.
(3) Construct a partition of \mathbb{Z} into three infinite sets.

Solution: Here's one example: consider the partition $\left\{S_{0}, S_{1}, S_{2}\right\}$ where ${ }^{1}$ T

$$
\begin{gathered}
S_{0}=\{\ldots,-3,0,3,6, \ldots\}=\{3 x \mid x \in \mathbb{Z}\} \\
S_{1}=\{\ldots,-2,1,4,7, \ldots\}=\{3 x+1 \mid x \in \mathbb{Z}\} \\
S_{2}=\{\ldots,-1,2,5,8, \ldots\}=\{3 x+2 \mid x \in \mathbb{Z}\}
\end{gathered}
$$

(4) Construct a partition of \mathbb{Q} into two infinite sets.

Solution: Pick any number $r \in \mathbb{Q}$. Then we may define the two sets

$$
\begin{aligned}
L_{r} & =\{x \mid x \in \mathbb{Q} \text { and } x<r\} \\
G_{r} & =\{x \mid x \in \mathbb{Q} \text { and } x \geq r\}
\end{aligned}
$$

Then $\left\{L_{r}, G_{r}\right\}$ is a partition of \mathbb{Q}. This works not just when r is rational, but even works when r is irrational \square^{2}
(5) How many elements are in the set $\left\{(x, y) \mid(x, y) \in \mathbb{R}^{2}\right.$ and $\left.x^{2}+y^{2}<12\right\}$?

Solution: Trick question: it is an infinite set! This set is the interior (not including the boundary) of a circle with radius $\sqrt{12}$ centered at the origin.
(6) Let $S \subset \mathbb{R}^{2}$ be the set of points shown on the left. Write down, in terms of S, the set on the right (i.e., a reflection over the line $y=\frac{1}{2}$).
smiley .png
Solution: The set on the right is obtained by reflecting each point of S over the line $y=\frac{1}{2}$. Reflecting any point (x, y) over this line gives the point $(x, 1-y)$, and so the set on the right is

$$
\{(x, 1-y) \mid(x, y) \in S\}
$$

[^0]
[^0]: ${ }^{1}$ The numbers in S_{1} are said to be ' 1 modulo 3' and the numbers in S_{2} ' 2 modulo 3'. Modular arithmetic is one of the fundamental concepts in number theory, and we will return to this later in the course!
 ${ }^{2}$ When r is irrational, G_{r} has no smallest element. That is,

 $$
 r \in \mathbb{R}-\mathbb{Q} \Longrightarrow\{x \mid x \in \mathbb{Q} \text { and } x \geq r\}=\{x \mid x \in \mathbb{Q} \text { and } x>r\}
 $$

 In this case, the partition $\left\{L_{r}, G_{r}\right\}$ is a Dedekind cut of the set \mathbb{Q}. Dedekind cuts are a way to axiomatically construct the set \mathbb{R} of real numbers from the set \mathbb{Q} of rational numbers.

