MATH 220.201 CLASS 2 QUESTIONS

1. Complement and Set Difference

Let U denote the universal set.
(1) Prove that $A-B=A \cap \bar{B}$.
(2) What is \bar{U} ?
(3) (De Morgan's Laws) Prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
(4) Find three sets A, B, and C such that $(A \cup B) \cap C \neq A \cup(B \cap C)$. (Hint: Draw Venn diagrams for $(A \cup B) \cap C$ and $A \cup(B \cap C)$.)

2. Indexed Union and Intersection

(1) For each $k \in \mathbb{N}$, define $A_{k} \subset \mathbb{R}$ by $A_{k}=\left[\frac{1}{k+1}, \frac{1}{k}\right]$. What is $\bigcup_{k=1}^{\infty} A_{k}$?
(2) For each $k \in \mathbb{N}$, define $B_{k} \subset \mathbb{R}$ by $B_{k}=\left(-\frac{1}{k}, \frac{1}{k}\right)$. What is $\bigcap_{k=1}^{\infty} B_{k}$?
(3) Let A and B be sets. Prove that $\bigcap_{b \in B}(A-\{b\})=A-B$.

3. Set Partitions and Cartesian Product

(1) List out the partitions of the set $\{1,2,3\}$. How many partitions are there for the set $\{1,2,3,4\}$? (Can you count them without listing them out?)
(2) Construct a partition of \mathbb{Z} into two sets.
(3) Construct a partition of \mathbb{Z} into three infinite sets.
(4) Construct a partition of \mathbb{Q} into two infinite sets.
(5) How many elements are in the set $\left\{(x, y) \mid(x, y) \in \mathbb{R}^{2}\right.$ and $\left.x^{2}+y^{2}<12\right\}$?
(6) Let $S \subset \mathbb{R}^{2}$ be the set of points shown on the left. Write down, in terms of S, the set on the right (i.e., a reflection over the line $y=\frac{1}{2}$).

