MATH 220.201 CLASS 25 QUESTIONS

1. Prove that the sequence $\left\{\frac{4 n^{2}-3}{5 n^{2}-2 n}\right\}$ converges to $\frac{4}{5}$.

Proof 1. We can calculate

$$
\frac{4 n^{2}-3}{5 n^{2}-2 n}-\frac{4}{5}=\frac{5\left(4 n^{2}-3\right)-4\left(5 n^{2}-2 n\right)}{5\left(5 n^{2}-2 n\right)}=\frac{8 n-15}{25 n^{2}-10 n}
$$

We must show that for any ϵ, there is some N such that for every $n>N$, this fraction has absolutely value less than ϵ. But $|8 n-15| \leq|8 n|$, and as long as $n \geq 10$, we have $\left|25 n^{2}-10 n\right| \geq\left|24 n^{2}\right|$. Therefore, as long as $n \geq 10$,

$$
\left|\frac{8 n-15}{25 n^{2}-10 n}\right| \leq\left|\frac{8 n}{24 n^{2}}\right|=\left|\frac{1}{3 n}\right|
$$

Therefore, if one takes $n>\max (10,1 / 3 \epsilon)$, we will have $\left|\frac{4 n^{2}-3}{5 n^{2}-2 n}-\frac{4}{5}\right|<\epsilon$, as desired.

Proof 2. Use the limit laws.

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}-3}{5 n^{2}-2 n}=\lim _{n \rightarrow \infty} \frac{4-\frac{3}{n^{2}}}{5-\frac{2}{n}}=\frac{4-\lim _{n \rightarrow \infty} \frac{3}{n^{2}}}{5-\lim _{n \rightarrow \infty} \frac{2}{n}}=\frac{4}{5}
$$

2. (12.11) Prove (using the definition of convergence) that if a sequence $\left\{s_{n}\right\}$ converges to L, then the sequence $\left\{s_{n^{2}}\right\}$ converges to L.

Proof. $\left\{s_{n}\right\}$ converges to L, which means that for every $\epsilon>0$, there exists some N such that if $n>N$, then $\left|s_{n}-L\right|<\epsilon$. If $n>N$, then $n^{2}>N$ as well, because $n^{2} \geq n$ for every natural number n. It therefore follows that if $n>N$, $\left|s_{n^{2}}-L\right|<\epsilon$. Thus, for every ϵ, the same value of N works for the sequence $\left\{s_{n^{2}}\right\}$ as for the sequence $\left\{s_{n}\right\}$.
3. (Adapted from 2011 WT2 Q7) Let $\left\{b_{n}\right\}$ be a sequence defined by

$$
b_{1}=2 \text { and } b_{n+1}=\frac{b_{n}+\sqrt{b_{n}}}{2}
$$

(a) Prove that $1<b_{n+1}<b_{n}$ for every $n \in \mathbb{N}$.
(b) Prove that $\left\{b_{n}\right\}$ converges to 1 .

Proof. (a) We prove that $1<b_{n+1}<b_{n}$ by induction on n. The base case, $n=1$, holds true because $b_{2}=1+\frac{1}{\sqrt{2}}$, which is greater than 1 and smaller than $2=1+1$.

Let us suppose that $1<b_{n+1}<b_{n}$. We will show that $1<b_{n+2}<b_{n+1}$. Since $1<b_{n+1}$, it follows that

$$
\begin{aligned}
1<\sqrt{b_{n+1}}<b_{n+1} & \Longrightarrow 2<b_{n+1}+\sqrt{b_{n+1}}<2 b_{n+1} \\
& \Longrightarrow 1<\frac{b_{n+1}+\sqrt{b_{n+1}}}{2}<b_{n+1} \\
& \Longrightarrow 1<b_{n+2}<b_{n+1}
\end{aligned}
$$

which completes the induction.
(b) The sequence $\left\{b_{n}\right\}$ is decreasing and is bounded below by 1 , and therefore it must converge to a limit $L \geq 1$. Let us suppose for a contradiction that $L>1$. Then for any $\epsilon>0$, there exists some N such that if $n>N, b_{n}<L+\epsilon$. Then this implies that

$$
\begin{aligned}
b_{n+1}=\frac{b_{n}+\sqrt{b_{n}}}{2} & <\frac{L+\epsilon+\sqrt{L+\epsilon}}{2} \\
& =\frac{L+\epsilon+\sqrt{L\left(1+\frac{\epsilon}{L}\right)}}{2} \\
& <\frac{L+\epsilon+\sqrt{L\left(1+\frac{\epsilon}{L}+\frac{\epsilon^{2}}{4 L^{2}}\right)}}{2} \\
& =\frac{L+\epsilon+\sqrt{L\left(1+\frac{\epsilon}{2 L}\right)^{2}}}{2} \\
& =\frac{L+\epsilon+\left(1+\frac{\epsilon}{2 L}\right) \sqrt{L}}{2} \\
& =\frac{L+\sqrt{L}}{2}+\frac{\epsilon}{2}\left(1+\frac{1}{\sqrt{L}}\right) \\
& <\frac{L+\sqrt{L}}{2}+\epsilon
\end{aligned}
$$

Pick any positive number $\epsilon<\frac{L-\sqrt{L}}{4}$. Then it will be the case that $\frac{L+\sqrt{L}}{2}+$ $\epsilon<L-\epsilon$, and thus $b_{n+1}<L-\epsilon$. But this contradicts the assumption that $\left|b_{n+1}-L\right|<\epsilon$! Therefore, it was impossible that $L>1$.
4. (2013 WT1, Q8) Prove that the function $f:(-1,1]-\{0\} \rightarrow \mathbb{R}$ given by $f(x)=$ $x-\frac{1}{x}$ is a bijection.

Proof. First, we prove the function is injective. Suppose that $x-\frac{1}{x}=y-\frac{1}{y}$ for some numbers $x, y \in(-1,1]-\{0\}$. Then

$$
\begin{aligned}
& x-y=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{x y} \\
& \Longrightarrow(x-y)(x y-1)=0
\end{aligned}
$$

It's impossible to have $x y=1$ by absolute value considerations, unless $x=y=1$. Thus, we have $x-y=0$, which implies $x=y$. So the function is injective.

Now we prove it's surjective. Let r be any real number. Then we solve the equation $x-\frac{1}{x}=r$

$$
x^{2}-r x-1=0 \Longleftrightarrow x=\frac{r \pm \sqrt{r^{2}+4}}{2}
$$

If r is zero, then the + root is 1 . If r is positive, the - root lies in $(-1,1]-\{0\}$ by difference of squares:

$$
\frac{r-\sqrt{r^{2}+4}}{2}=\frac{-4}{2\left(r+\sqrt{r^{2}+4}\right)}=-\frac{2}{r+\sqrt{r^{2}+4}}>-\frac{2}{0+\sqrt{0+4}}=-1
$$

If r is negative, the + root lies in $(-1,1]-\{0\}$ by a similar argument.
5. Give an example of

- A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which is injective, but not surjective.

Solution: Try the function $f(n)=2 n$.

- A function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ which is surjective, but not injective.

Solution: Try the function $g(n)=\lfloor n / 2\rfloor$.

- Prove that for any such functions f and $g, f \circ g$ cannot possibly be bijective.

Solution: Because g is not injective, there are two distinct integers x and y such that $g(x)=g(y)$. Then $f(g(x))=f(g(y))$, so $f \circ g$ is not injective. So it can't possibly be bijective. (You can show $f \circ g$ is not surjective, either.)

- Give such examples with the property that $g \circ f$ is bijective.

Solution: The the examples I gave above, $f(n)=2 n$ and $g(n)=\lfloor n / 2\rfloor$. Then $g(f(n))=n$.

