## MATH 220.201 CLASS 25 QUESTIONS

1. Prove that the sequence $\left\{\frac{4 n^{2}-3}{5 n^{2}-2 n}\right\}$ converges to $\frac{4}{5}$.
2. (12.11) Prove (using the definition of convergence) that if a sequence $\left\{s_{n}\right\}$ converges to $L$, then the sequence $\left\{s_{n^{2}}\right\}$ converges to $L$.
3. (Adapted from 2011 WT2 Q7) Let $\left\{b_{n}\right\}$ be a sequence defined by $b_{1}=2$ and $b_{n+1}=\frac{b_{n}+\sqrt{b_{n}}}{2}$
(a) Prove that $1<b_{n+1}<b_{n}$ for every $n \in \mathbb{N}$.
(b) Prove that $\left\{b_{n}\right\}$ converges to 1 .
4. (2013 WT1, Q8) Prove that the function $f:(-1,1]-\{0\} \rightarrow \mathbb{R}$ given by $f(x)=$ $x-\frac{1}{x}$ is a bijection.
5. Give an example of

- A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which is injective, but not surjective.
- A function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ which is surjective, but not injective.
- Prove that for any such functions $f$ and $g, f \circ g$ cannot possibly be bijective.
- Give such examples with the property that $g \circ f$ is bijective.

