
MATH 220.201 CLASS 24 NOTES

1. Recall from last time: convergence

Recall the following de�nition from last time.

De�nition 1.1. Let a1, a2, a3, . . . be a sequence of real numbers. We say that {an}
converges to the real number L if1

∀ε > 0, ∃N > 0,∀n > N, |an − L| < ε

If a sequence does not converge, we say it diverges.

As an example, consider the sequence de�ned by a1 = 1 and

an+1 = an +
1

an

for every n ≥ 1. So this sequence goes 1, 2, 2.5, 2.9, .... It is increasing, but the rate of
increase slows.

Proposition 1.2. This sequence diverges.

Proof. Since an is positive for every n, it follows that an+1 > an for every n. Suppose for
a contradiction that this sequence converges to some limit L.
First, we'll prove that an < L for every n. Let us suppose there is some m such that

am ≥ L. Write am = L+ d for some d ≥ 0. Then an ≥ L+ d for every n ≥ m. If d > 0,
then it becomes impossible to have |an − L| < ε when ε = d, giving a contradiction. If
d = 0, i.e. am = L, then am+1 = L+ 1

L
, and we have the same contradiction as the case

d > 0. Thus, for every n, an < L. Consequently, 1
an
> 1

L
, and so

an+1 = an +
1

an
> an +

1

L

Now pick ε = 1
2L
. Then there is some N such that for every n > N , |an − L| < 1

2L
. In

particular, this implies an > L− 1
2L
. Then

an+1 >

(
L− 1

2L

)
+

1

L
= L+

1

2L

But this contradicts the fact that an+1 < L! Therefore, no such L can exist.
�

1Here I've omitted the stipulation that N be a natural number. Whether N is or isn't a natural

number isn't really relevant, as long as n is required to be one.
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2. Infinite series

An in�nite series encodes the idea of summing an in�nite number of terms.

De�nition 2.1. Let x1, x2, x3, . . . be real numbers. Then the series

∞∑
k=1

xk = x1 + x2 + x3 + . . .

is de�ned as the limit lim
n→∞

n∑
k=1

xk. Written another way, this is

x1 + x2 + x3 + . . . = lim
n→∞

sn

where sn = x1 + x2 + . . . + xn =
n∑
k=1

sk. sn is called the n-th partial sum. xk is called

the k-th term of the series.

Note that there is an important di�erence between the terms xk and the partial sums
sn. Consider the following example:

xk =
1

k(k + 1)

Here, the terms of the series are 1
2
, 1
6
, 1
12
, 1
20
, . . .. The sequence {xk} converges to 0.

However, the series 1
2
+ 1

6
+ 1

12
+ 1

20
converges to 1.

Proposition 2.2. The series
∞∑
k=1

1
k(k+1)

converges to 1.

Proof. In the worksheet from Class 10, we proved by induction that

n∑
k=1

1

k(k + 1)
=

n

n+ 1

In other words, the n-th partial sum is sn = n
n+1

. We must therefore prove that

lim
n→∞

n
n+1

= 1. For any ε, as long as n > N = 1
ε
we have that

|sn − 1| = 1

n+ 1
< ε

We have thus shown that for every ε there exists an N , and so sn → 1. �

3. Two examples

Suppose that x1 + x2 + x3 + . . . is a series whose terms are all positive real numbers.
What conditions are required in order for this series to converge? It's rather intuitive

(and you should try proving!) that if
∞∑
k=1

xk converges, then lim
k→∞

xk = 0. But as the

example on page 1 shows, this isn't necessarily enough. So now the question is, how
quickly must xk decrease in order for the series to converge? Here are two examples
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Proposition 3.1. Let xk =
1
k
. Then the series2

∞∑
k=1

xk = 1 +
1

2
+

1

3
+

1

4
+ . . .

diverges.

Proof. We can bound the 2m-th partial sum from below

2m∑
k=1

1

k
= 1 +

1

2
+

22∑
k=21+1

1

k
+

23∑
k=22+1

1

k
+ . . .+

2m∑
k=2m−1+1

1

k

> 1 +
1

2
+

22∑
k=21+1

1

4
+

23∑
k=22+1

1

8
+ . . .+

2m∑
k=2m−1+1

1

2m

= 1 +
1

2
+

1

2
+

1

2
+ . . .+

1

2

= 1 +
m

2

Thus, s2m > 1 + m
2
. Because sn is increasing as n→∞, it follows that for any n ≥ 2m,

sn > 1 + m
2
. Thus, sn →∞.3 �

Proposition 3.2. Let xk =
1
k2
. Then the series

∞∑
k=1

xk = 1 +
1

4
+

1

9
+

1

16
+ . . .

converges.4

Proof. We have that

sn = 1 +
1

2 · 2
+

1

3 · 3
+ . . .+

1

n · n
> 1 +

1

1 · 2
+

1

2 · 3
+ . . .+

1

(n− 1) · n

= 1 +
n− 1

n
= 2− 1

n

Thus, for every n, sn < 2 − 1
n
, so the sn's are bounded above. Therefore, the series

converges. �

2This is called the harmonic series.
3You can use an argument similar to that above to show that s2m < m+ 1

2 . This gives you a pretty

good estimate of how quickly the partial sums grow, as s2m is somewhere between m
2 and m for large

values of m.
4It turns out this series converges to π2

6 . The question of how to prove this is called the Basel problem.
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4. Geometric series and the ratio test

You may also be familiar with geometric series. These show up in a variety of places
in nature.

De�nition 4.1. A geometric series has the form

a+ ar + ar2 + ar3 + . . .

for some real numbers a and r. That is, xn = arn−1. a is the �rst term and r is the

ratio.

Proposition 4.2. The geometric series above converges to a
1−r when |r| < 1 and to 0

when a = 0. If |r| ≥ 1 and a 6= 0, it diverges.

Proof. Clearly if a = 0, the geometric series converges. So let us now assume a 6= 0.
Consider the equation

(1 + r + r2 + . . .+ rn−1)(1− r) = 1− rn

If r 6= 1, we can divide both sides by 1− r to get

1 + r + r2 + . . .+ rn−1 =
1− rn

1− r

Thus, the n-th partial sum, sn =
n∑
k=1

ark−1 is equal to a · 1−rn
1−r as long as r 6= 1. So

lim
n→∞

sn = lim
n→∞

a · 1− r
n

1− r
= a ·

1− lim
n→∞

(rn)

1− r
If |r| < 1, lim

n→∞
(rn) = 0 and so the above equals a

1−r . If |r| ≥ 1, lim
n→∞

(rn) diverges, and

the above diverges.
The last case we did not address is when r = 1. In this case, the geometric series is

a+ a+ a+ a+ . . .

which clearly diverges. �

Okay, here's how we can use geometric series to prove the convergence of series that
aren't quite geometric series.

Proposition 4.3. Let xk =
k(k−1)

3k
. The series

∞∑
k=1

xk converges.

The idea here is that once we get to very big k, xk+1 is only slightly larger than
xk/3. The denominator always gets multiplied by 3 from each term to the next, but the
numerator does not increase very much. So if xk+1 is only slightly larger than xk/3, it
must be smaller than xk/2. We then can use this face to bound the tail of the series by
a geometric series of ratio 2.

Proof. We �rst claim that for k ≥ 5, xk+1

xk
≤ 1

2
. This is true because

xk+1

xk
=

k(k+1)
3k+1

k(k−1)
3k

=
k + 1

3(k − 1)
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and
k + 1

3(k − 1)
≤ 1

2
⇐⇒ 2(k + 1) ≤ 3(k − 1) ⇐⇒ 5 ≤ k

Thus, it follows that

x6 ≤
1

2
x5

x7 ≤
1

2
x6 ≤

1

4
x5

...

xm+5 ≤
1

2m
x5

...

Thus, looking at the (n+ 5)-th partial sum for some n,

sn+5 = x1 + x2 + . . .+ xn+5

≤ x1 + x2 + x3 + x4 + x5 +
1

2
x5 + . . .+

1

2n
x5

= x1 + x2 + x3 + x4 +

(
2− 1

2n

)
x5

≤ x1 + x2 + x3 + x4 + 2x5

= 0 +
2

9
+

2

9
+

4

27
+

40

243
=

184

243

So the sn's are bounded above and each is larger than the previous one. Therefore, they
converge. (and in fact, converge to something less than 184

243
.) �

Just for fun: If you would like to know how you'd compute the exact value of a series
like this, there are some neat tricks for doing this. Consider the function f(z) de�ned
on the interval −1 ≤ z ≤ 1:

f(z) =
1

1− z
= 1 + z + z2 + z3 + z4 + . . . =

∞∑
k=0

zk

The fact that these two expressions shown are equal holds because of the expression for
the sum of a geometric series - which is valid whenever −1 ≤ z ≤ 1. If you calculate

f(1/3), it gives you the value of
∞∑
k=1

(1/3)k−1 to be equal to 1
1−1/3 = 3/2. But you could

instead look at f ′(z):

f ′(z) =
1

(1− z)2
= 1 + 2z + 3z2 + 4z3 + 5z4 + . . . =

∞∑
k=0

kzk−1

Take the derivative again to get

f ′′(z) =
2

(1− z)3
= 2 + 6z + 12z2 + 20z3 + . . . =

∞∑
k=0

k(k − 1)zk−2
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Now if you plug in 1/3 you get

f ′′(1/3) =
2

(2/3)3
=
∞∑
k=0

k(k − 1)

3k−2

This looks a whole lot like the sum we're trying to compute! The k = 0 term is zero,

so this is the same as
∞∑
k=1

k(k−1)
3k−2 . So if you take this and divide by 32, you'll get the sum

we're trying to actually calculate. Thus,
∞∑
k=1

k(k − 1)

3k
=

1

32
· 2

(2/3)3
=

2 · 33

32 · 23
=

3

4

5. Supremum, Infimum, Completeness Axiom

We didn't get to the de�nition of the supremum, in�mum, and a discussion of the
Completeness Axiom in class today. See the notes posted on the main course website if
you are curious. It has to do with how one axiomatically constructs the real numbers!
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