MATH 220.201 CLASS 23 QUESTIONS

Definition 0.1. Let $\{a_n\} = a_1, a_2, a_3, \ldots$ be a sequence of real numbers, and let L be another real number. $\{a_n\}$ is said to **converge to** L if the following holds:

For every real number $\epsilon > 0$, there exists some $N \in \mathbb{N}$, such that for every natural number n > N, $|a_n - L| < \epsilon$.

1. Prove that the sequence $\left\{\frac{n}{2n+1}\right\}$ converges.

Scrapwork: Intuitively, as $n \to \infty$, $\frac{n}{2n+1} \to 1/2$. To prove this, we need to show that for any ϵ , there exists some N such that if n > N, the inequality $\left|\frac{n}{2n+1} - \frac{1}{2}\right| < \epsilon$ holds true. We have to figure out how big n must be (in terms of ϵ) to make this inequality happen. Some simple algebra shows that

$$\left|\frac{n}{2n+1} - \frac{1}{2}\right| = \left|\frac{2n - (2n+1)}{2(2n+1)}\right| = \left|\frac{-1}{4n+2}\right| = \frac{1}{4n+2}$$

so we must have $\frac{1}{4n+2} < \epsilon$. This happens iff $n > \frac{1}{4\epsilon} - \frac{1}{2}$. So if we take $N = \lceil 1/4\epsilon \rceil$, then this inequality will always hold true if n > N.

Proof. We'll show that this sequence converges to 1/2. Let ϵ be any positive real number. Then we claim that for any $n > \lfloor 1/4\epsilon \rfloor$,

$$|\frac{n}{2n+1} - \frac{1}{2}| < \epsilon$$

that is, we may take $N = \lfloor 1/4\epsilon \rfloor$ This is because

$$|\frac{n}{2n+1} - \frac{1}{2}| = |\frac{-1}{4n+2}| = \frac{1}{4n+2} < \frac{1}{1/\epsilon} = \epsilon$$

This completes the proof.

2. Prove that the sequence $\{n\}$ diverges.

Proof. Suppose, for a contradiction, that this sequence has some limit L. Then for any ϵ , there is some N such that for any n > N, $|n-L| < \epsilon$. Pick $\epsilon = 1/3$, and let N be the number satisfying the condition for this ϵ . Then |(N+1)-L| < 1/3and |(N+2)-L| < 1/3. By the Triangle Inequality,

$$|(N+2) - (N+1)| \le |(N+2) - L| + |L - (N+1)|$$

But the left side equals 1, while the right side is less than 2/3. This is a contradiction! Thus, no such L exists.

3. Does the sequence $\left\{\frac{2^n-1}{2^n} + \frac{(-1)^n}{n^2}\right\}$ converge?

4. Suppose that $\{a_n\}$ is a sequence of real numbers which converges to L, and suppose that $a_n > 1$ for every n. Is it true that $\{1/a_n\}$ converges to 1/L?

These are both answered by the proof of the following proposition.

Proposition 0.2. Let $a_n \to a$ and $b_n \to b$ be two convergent sequences. Then

- $a_n + b_n \rightarrow a + b$
- $a_n b_n \to a b$
- For any $c \in \mathbb{R}$, $ca_n \to ca$
- $1/b_n \rightarrow 1/b$ as long as $b_n \neq 0, b \neq 0$
- *Proof.* For any ϵ , $\epsilon/2$ is another positive real number, and so there exist natural numbers M, N such that if m > M, $|a_m a| < \epsilon/2$ and if n > N, $|b_n b| < \epsilon/2$. Therefore, if $k > \max(M, N)$,

$$|a_k - a| + |b_k - b| < \epsilon$$

By the Triangle Inequality, $|(a_k + b_k) - (a + b)| < |a_k - a| + |b_k - b|$, and so $|(a_k + b_k) - (a + b)| < \epsilon$. Thus, $\max(M, N)$ satisfies the required condition for the sequence $a_k + b_k$.

• Pick any ϵ . First let's notice that

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab| \le |(a_n - a)b_n| + |a(b_n - b)|$$

Thus, if we want to have $|a_nb_n - ab| < \epsilon$, it suffices to have $|(a_n - a)b_n| < \epsilon/2$ and $|a(b_n - b)| < \epsilon/2$. We know that for *n* larger than some N_1 , $|b_n - b| < b/2$ (i.e. b_n is between b/2 and 3b/2) and for *n* larger than some N_2 , $|a_n - a| < \epsilon/4b$. Therefore, for *n* larger than $\max(N_1, N_2)$, these both become true, which then implies that

$$(a_n - a)b_n| < (\epsilon/4b)(3b/2) < \epsilon/2$$

Similarly, for n larger than some N_3 , $|b_n - b| < \epsilon/2a$ and thus

$$|a(b_n - b)| < \epsilon/2$$

So for $n > \max(N_1, N_2, N_3)$, both of the displayed inequalities are true, and thus $|a_n b_n - ab| < \epsilon$.

- For any $\epsilon > 0$, ϵ/c is another positive real number, and so there is some $N(\epsilon/c)$ such that if $n > N(\epsilon/c)$, then $|a_n a| < \epsilon/c$. This means that $|ca_n ca| < \epsilon$. Thus, $N(\epsilon/c)$ is the value of N required for the sequence ca_n .
- Pick any ϵ . For *n* larger than some N_1 , $|b_n b| < \frac{b^2}{2} \cdot \epsilon$. This means that

$$|bb_n\left(\frac{1}{b} - \frac{1}{b_n}\right)| < \frac{b^2}{2} \cdot c$$

For n larger than some N_2 , $|b_n - b| < b/2$, in which case

$$\left|\frac{b^2}{2}\left(\frac{1}{b} - \frac{1}{b_n}\right)\right| < \left|bb_n\left(\frac{1}{b} - \frac{1}{b_n}\right)\right|$$

Thus, for $n > \max(N_1, N_2)$, $\left|\frac{1}{b} - \frac{1}{b_n}\right| < \epsilon$, as desired.

5. Prove that the sequence $\{a_n\}$ defined by $a_1 = 1$ and $a_{n+1} = a_n + \frac{1}{a_n}$ diverges. (Hint: Suppose that it converges, and use proof by contradiction.)

Proof. I'm going to save this for next class. Think about it!

6. Prove that the sequence $\{a_n\}$ defined by $a_1 = 1$ and $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$ converges to $\sqrt{2}$. (Hint: Define a new sequence $\{b_n\}$ by $b_n = a_n - \sqrt{2}$. Now find a recursive formula for this new sequence and use that to show that it converges to 0.)

Proof. Define the sequence

$$b_n = a_n - \sqrt{2}$$

Then we can find a recursive formula

$$b_{n+1} = a_{n+1} - \sqrt{2} = \frac{a_n}{2} + \frac{1}{a_n} - \sqrt{2}$$
$$= \frac{b_n + \sqrt{2}}{2} + \frac{1}{b_n + \sqrt{2}} - \sqrt{2}$$
$$= \frac{(b_n + \sqrt{2})^2 + 2 - 2(b_n + \sqrt{2})\sqrt{2}}{2(b_2 + \sqrt{2})}$$
$$= \frac{b_n^2}{2(b_n + \sqrt{2})}$$

We'll first show by induction that $1 - \sqrt{2} \leq b_n \leq \sqrt{2} - 1$ for every $n \in \mathbb{N}$. Notice that $b_1 = 1 - \sqrt{2}$ - this is the base case. And for any given n, if $1 - \sqrt{2} \leq b_n \leq \sqrt{2} - 1$, then

$$0 \le \frac{b_n^2}{2(b_n + \sqrt{2})} < \frac{b_n^2}{2} < \frac{|b_n|}{2}$$

and therefore, $|b_{n+1}| < |b_n|/2$ (*), which then implies that $1 - \sqrt{2} \le b_{n+1} \le \sqrt{2} - 1$. So $1 - \sqrt{2} \le b_n \le \sqrt{2} - 1$ for every $n \in \mathbb{N}$.

Note that we also showed $|b_{n+1}| < |b_n|/2$ for every $n \in \mathbb{N}$ (marked with a (\star)). From this, it is clear by induction that $|b_n| < 1/2^n$, and so $b_n \to 0$. Since $b_n = a_n - \sqrt{2}$, it follows that $a_n \to \sqrt{2}$.

3