
MATH 220.201 CLASS 23 QUESTIONS

De�nition 0.1. Let {an} = a1, a2, a3, . . . be a sequence of real numbers, and let L be

another real number. {an} is said to converge to L if the following holds:

For every real number ε > 0, there exists some N ∈ N, such that for every natural

number n > N , |an − L| < ε.

1. Prove that the sequence { n
2n+1
} converges.

Scrapwork: Intuitively, as n → ∞, n
2n+1

→ 1/2. To prove this, we need to
show that for any ε, there exists some N such that if n > N , the inequality
| n
2n+1

− 1
2
| < ε holds true. We have to �gure out how big n must be (in terms of

ε) to make this inequality happen. Some simple algebra shows that

| n

2n+ 1
− 1

2
| = |2n− (2n+ 1)

2(2n+ 1)
| = | −1

4n+ 2
| = 1

4n+ 2

so we must have 1
4n+2

< ε. This happens i� n > 1
4ε
− 1

2
. So if we take N = d1/4εe,

then this inequality will always hold true if n > N .

Proof. We'll show that this sequence converges to 1/2. Let ε be any positive real
number. Then we claim that for any n > d1/4εe,

| n

2n+ 1
− 1

2
| < ε

that is, we may take N = d1/4εe This is because

| n

2n+ 1
− 1

2
| = | −1

4n+ 2
| = 1

4n+ 2
<

1

1/ε
= ε

This completes the proof.
�

2. Prove that the sequence {n} diverges.

Proof. Suppose, for a contradiction, that this sequence has some limit L. Then
for any ε, there is some N such that for any n > N , |n−L| < ε. Pick ε = 1/3, and
let N be the number satisfying the condition for this ε. Then |(N +1)−L| < 1/3
and |(N + 2)− L| < 1/3. By the Triangle Inequality,

|(N + 2)− (N + 1)| ≤ |(N + 2)− L|+ |L− (N + 1)|
But the left side equals 1, while the right side is less than 2/3. This is a contra-
diction! Thus, no such L exists. �

3. Does the sequence {2n−1
2n

+ (−1)n

n2 } converge?
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4. Suppose that {an} is a sequence of real numbers which converges to L, and
suppose that an > 1 for every n. Is it true that {1/an} converges to 1/L?

These are both answered by the proof of the following proposition.

Proposition 0.2. Let an → a and bn → b be two convergent sequences. Then

• an + bn → a+ b
• anbn → ab
• For any c ∈ R, can → ca
• 1/bn → 1/b as long as bn 6= 0, b 6= 0

Proof. • For any ε, ε/2 is another positive real number, and so there exist
natural numbers M,N such that if m > M , |am − a| < ε/2 and if n > N ,
|bn − b| < ε/2. Therefore, if k > max(M,N),

|ak − a|+ |bk − b| < ε

By the Triangle Inequality, |(ak + bk)− (a+ b)| < |ak − a|+ |bk − b|, and so
|(ak + bk) − (a + b)| < ε. Thus, max(M,N) satis�es the required condition
for the sequence ak + bk.

• Pick any ε. First let's notice that

|anbn − ab| = |anbn − abn + abn − ab| ≤ |(an − a)bn|+ |a(bn − b)|
Thus, if we want to have |anbn−ab| < ε, it su�ces to have |(an−a)bn| < ε/2
and |a(bn−b)| < ε/2. We know that for n larger than some N1, |bn−b| < b/2
(i.e. bn is between b/2 and 3b/2) and for n larger than some N2, |an − a| <
ε/4b. Therefore, for n larger than max(N1, N2), these both become true,
which then implies that

|(an − a)bn| < (ε/4b)(3b/2) < ε/2

Similarly, for n larger than some N3, |bn − b| < ε/2a and thus

|a(bn − b)| < ε/2

So for n > max(N1, N2, N3), both of the displayed inequalities are true, and
thus |anbn − ab| < ε.

• For any ε > 0, ε/c is another positive real number, and so there is some
N(ε/c) such that if n > N(ε/c), then |an − a| < ε/c. This means that
|can− ca| < ε. Thus, N(ε/c) is the value of N required for the sequence can.

• Pick any ε. For n larger than some N1, |bn − b| < b2

2
· ε. This means that

|bbn
(
1

b
− 1

bn

)
| < b2

2
· ε

For n larger than some N2, |bn − b| < b/2, in which case

|b
2

2

(
1

b
− 1

bn

)
| < |bbn

(
1

b
− 1

bn

)
|
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Thus, for n > max(N1, N2), |1b −
1
bn
| < ε, as desired.

�

5. Prove that the sequence {an} de�ned by a1 = 1 and an+1 = an + 1
an

diverges.

(Hint: Suppose that it converges, and use proof by contradiction.)

Proof. I'm going to save this for next class. Think about it! �

6. Prove that the sequence {an} de�ned by a1 = 1 and an+1 =
an
2
+ 1

an
converges to√

2. (Hint: De�ne a new sequence {bn} by bn = an −
√
2. Now �nd a recursive

formula for this new sequence and use that to show that it converges to 0.)

Proof. De�ne the sequence

bn = an −
√
2

Then we can �nd a recursive formula

bn+1 = an+1 −
√
2 =

an
2

+
1

an
−
√
2

=
bn +

√
2

2
+

1

bn +
√
2
−
√
2

=
(bn +

√
2)2 + 2− 2(bn +

√
2)
√
2

2(b2 +
√
2)

=
b2n

2(bn +
√
2)

We'll �rst show by induction that 1−
√
2 ≤ bn ≤

√
2− 1 for every n ∈ N. Notice

that b1 = 1−
√
2 - this is the base case. And for any given n, if 1 −

√
2 ≤ bn ≤√

2− 1, then

0 ≤ b2n
2(bn +

√
2)
<
b2n
2
<
|bn|
2

and therefore, |bn+1| < |bn|/2 (?), which then implies that 1−
√
2 ≤ bn+1 ≤

√
2−1.

So 1−
√
2 ≤ bn ≤

√
2− 1 for every n ∈ N.

Note that we also showed |bn+1| < |bn|/2 for every n ∈ N (marked with a
(?)). From this, it is clear by induction that |bn| < 1/2n, and so bn → 0. Since
bn = an −

√
2, it follows that an →

√
2. �


