MATH 220.201 CLASS 23 QUESTIONS

Definition 0.1. Let $\left\{a_{n}\right\}=a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of real numbers, and let L be another real number. $\left\{a_{n}\right\}$ is said to converge to L if the following holds:

For every real number $\epsilon>0$, there exists some $N \in \mathbb{N}$, such that for every natural number $n>N,\left|a_{n}-L\right|<\epsilon$.

1. Prove that the sequence $\left\{\frac{n}{2 n+1}\right\}$ converges.

Scrapwork: Intuitively, as $n \rightarrow \infty, \frac{n}{2 n+1} \rightarrow 1 / 2$. To prove this, we need to show that for any ϵ, there exists some N such that if $n>N$, the inequality $\left|\frac{n}{2 n+1}-\frac{1}{2}\right|<\epsilon$ holds true. We have to figure out how big n must be (in terms of ϵ) to make this inequality happen. Some simple algebra shows that

$$
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|=\left|\frac{2 n-(2 n+1)}{2(2 n+1)}\right|=\left|\frac{-1}{4 n+2}\right|=\frac{1}{4 n+2}
$$

so we must have $\frac{1}{4 n+2}<\epsilon$. This happens iff $n>\frac{1}{4 \epsilon}-\frac{1}{2}$. So if we take $N=\lceil 1 / 4 \epsilon\rceil$, then this inequality will always hold true if $n>N$.
Proof. We'll show that this sequence converges to $1 / 2$. Let ϵ be any positive real number. Then we claim that for any $n>\lceil 1 / 4 \epsilon\rceil$,

$$
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|<\epsilon
$$

that is, we may take $N=\lceil 1 / 4 \epsilon\rceil$ This is because

$$
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|=\left|\frac{-1}{4 n+2}\right|=\frac{1}{4 n+2}<\frac{1}{1 / \epsilon}=\epsilon
$$

This completes the proof.
2. Prove that the sequence $\{n\}$ diverges.

Proof. Suppose, for a contradiction, that this sequence has some limit L. Then for any ϵ, there is some N such that for any $n>N,|n-L|<\epsilon$. Pick $\epsilon=1 / 3$, and let N be the number satisfying the condition for this ϵ. Then $|(N+1)-L|<1 / 3$ and $|(N+2)-L|<1 / 3$. By the Triangle Inequality,

$$
|(N+2)-(N+1)| \leq|(N+2)-L|+|L-(N+1)|
$$

But the left side equals 1 , while the right side is less than $2 / 3$. This is a contradiction! Thus, no such L exists.
3. Does the sequence $\left\{\frac{2^{n}-1}{2^{n}}+\frac{(-1)^{n}}{n^{2}}\right\}$ converge?
4. Suppose that $\left\{a_{n}\right\}$ is a sequence of real numbers which converges to L, and suppose that $a_{n}>1$ for every n. Is it true that $\left\{1 / a_{n}\right\}$ converges to $1 / L$?

These are both answered by the proof of the following proposition.
Proposition 0.2. Let $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ be two convergent sequences. Then

- $a_{n}+b_{n} \rightarrow a+b$
- $a_{n} b_{n} \rightarrow a b$
- For any $c \in \mathbb{R}, c a_{n} \rightarrow c a$
- $1 / b_{n} \rightarrow 1 / b$ as long as $b_{n} \neq 0, b \neq 0$

Proof. - For any $\epsilon, \epsilon / 2$ is another positive real number, and so there exist natural numbers M, N such that if $m>M,\left|a_{m}-a\right|<\epsilon / 2$ and if $n>N$, $\left|b_{n}-b\right|<\epsilon / 2$. Therefore, if $k>\max (M, N)$,

$$
\left|a_{k}-a\right|+\left|b_{k}-b\right|<\epsilon
$$

By the Triangle Inequality, $\left|\left(a_{k}+b_{k}\right)-(a+b)\right|<\left|a_{k}-a\right|+\left|b_{k}-b\right|$, and so $\left|\left(a_{k}+b_{k}\right)-(a+b)\right|<\epsilon$. Thus, $\max (M, N)$ satisfies the required condition for the sequence $a_{k}+b_{k}$.

- Pick any ϵ. First let's notice that

$$
\left|a_{n} b_{n}-a b\right|=\left|a_{n} b_{n}-a b_{n}+a b_{n}-a b\right| \leq\left|\left(a_{n}-a\right) b_{n}\right|+\left|a\left(b_{n}-b\right)\right|
$$

Thus, if we want to have $\left|a_{n} b_{n}-a b\right|<\epsilon$, it suffices to have $\left|\left(a_{n}-a\right) b_{n}\right|<\epsilon / 2$ and $\left|a\left(b_{n}-b\right)\right|<\epsilon / 2$. We know that for n larger than some $N_{1},\left|b_{n}-b\right|<b / 2$ (i.e. b_{n} is between $b / 2$ and $3 b / 2$) and for n larger than some $N_{2},\left|a_{n}-a\right|<$ $\epsilon / 4 b$. Therefore, for n larger than $\max \left(N_{1}, N_{2}\right)$, these both become true, which then implies that

$$
\left|\left(a_{n}-a\right) b_{n}\right|<(\epsilon / 4 b)(3 b / 2)<\epsilon / 2
$$

Similarly, for n larger than some $N_{3},\left|b_{n}-b\right|<\epsilon / 2 a$ and thus

$$
\left|a\left(b_{n}-b\right)\right|<\epsilon / 2
$$

So for $n>\max \left(N_{1}, N_{2}, N_{3}\right)$, both of the displayed inequalities are true, and thus $\left|a_{n} b_{n}-a b\right|<\epsilon$.

- For any $\epsilon>0, \epsilon / c$ is another positive real number, and so there is some $N(\epsilon / c)$ such that if $n>N(\epsilon / c)$, then $\left|a_{n}-a\right|<\epsilon / c$. This means that $\left|c a_{n}-c a\right|<\epsilon$. Thus, $N(\epsilon / c)$ is the value of N required for the sequence $c a_{n}$.
- Pick any ϵ. For n larger than some $N_{1},\left|b_{n}-b\right|<\frac{b^{2}}{2} \cdot \epsilon$. This means that

$$
\left|b b_{n}\left(\frac{1}{b}-\frac{1}{b_{n}}\right)\right|<\frac{b^{2}}{2} \cdot \epsilon
$$

For n larger than some $N_{2},\left|b_{n}-b\right|<b / 2$, in which case

$$
\left|\frac{b^{2}}{2}\left(\frac{1}{b}-\frac{1}{b_{n}}\right)\right|<\left|b b_{n}\left(\frac{1}{b}-\frac{1}{b_{n}}\right)\right|
$$

Thus, for $n>\max \left(N_{1}, N_{2}\right),\left|\frac{1}{b}-\frac{1}{b_{n}}\right|<\epsilon$, as desired.
5. Prove that the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=1$ and $a_{n+1}=a_{n}+\frac{1}{a_{n}}$ diverges. (Hint: Suppose that it converges, and use proof by contradiction.)

Proof. I'm going to save this for next class. Think about it!
6. Prove that the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=1$ and $a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}$ converges to $\sqrt{2}$. (Hint: Define a new sequence $\left\{b_{n}\right\}$ by $b_{n}=a_{n}-\sqrt{2}$. Now find a recursive formula for this new sequence and use that to show that it converges to 0 .)

Proof. Define the sequence

$$
b_{n}=a_{n}-\sqrt{2}
$$

Then we can find a recursive formula

$$
\begin{aligned}
b_{n+1}=a_{n+1}-\sqrt{2} & =\frac{a_{n}}{2}+\frac{1}{a_{n}}-\sqrt{2} \\
& =\frac{b_{n}+\sqrt{2}}{2}+\frac{1}{b_{n}+\sqrt{2}}-\sqrt{2} \\
& =\frac{\left(b_{n}+\sqrt{2}\right)^{2}+2-2\left(b_{n}+\sqrt{2}\right) \sqrt{2}}{2\left(b_{2}+\sqrt{2}\right)} \\
& =\frac{b_{n}^{2}}{2\left(b_{n}+\sqrt{2}\right)}
\end{aligned}
$$

We'll first show by induction that $1-\sqrt{2} \leq b_{n} \leq \sqrt{2}-1$ for every $n \in \mathbb{N}$. Notice that $b_{1}=1-\sqrt{2}$ - this is the base case. And for any given n, if $1-\sqrt{2} \leq b_{n} \leq$ $\sqrt{2}-1$, then

$$
0 \leq \frac{b_{n}^{2}}{2\left(b_{n}+\sqrt{2}\right)}<\frac{b_{n}^{2}}{2}<\frac{\left|b_{n}\right|}{2}
$$

and therefore, $\left|b_{n+1}\right|<\left|b_{n}\right| / 2(\star)$, which then implies that $1-\sqrt{2} \leq b_{n+1} \leq \sqrt{2}-1$. So $1-\sqrt{2} \leq b_{n} \leq \sqrt{2}-1$ for every $n \in \mathbb{N}$.

Note that we also showed $\left|b_{n+1}\right|<\left|b_{n}\right| / 2$ for every $n \in \mathbb{N}$ (marked with a $(\star))$. From this, it is clear by induction that $\left|b_{n}\right|<1 / 2^{n}$, and so $b_{n} \rightarrow 0$. Since $b_{n}=a_{n}-\sqrt{2}$, it follows that $a_{n} \rightarrow \sqrt{2}$.

