MATH 220.201 CLASS 22 QUESTIONS

1. Let A and B be sets, and suppose there is an injective function $f: A \rightarrow B$. Can you construct a surjective function $g: B \rightarrow A$?

Solution: Yes we can, so long as A is nonempty. Pick some fixed element x in A. The fact that $f: A \rightarrow B$ is injective means that for every $b \in B$, there is at most one $a \in A$ such that $f(a)=b$. Then we can construct a surjective function $g: B \rightarrow A$ defined by the property that

- If $b \in \operatorname{im}(f)$, then let $g(b)$ be the unique element such that $f(g(b))=b$.
- If $b \notin \operatorname{im}(f)$, then let $g(b)=x$.

Note that this construction wouldn't work if A were empty. For example, if $A=\emptyset$ and $B=\{1,2,3\}$, then there are $3^{0}=1$ functions from A to B, and $0^{3}=0$ functions from B to A.
2. Let A and B be sets, and suppose there is a surjective function $g: B \rightarrow A$. Can you construct an injective function $f: A \rightarrow B$?

Solution: Yes you can, but doing so requires the Axiom of Choice. The fact that $g: A \rightarrow B$ is surjective means that for every $b \in B$, there is at least one $a \in A$ such that $g(a)=b$. So for each $b \in B$, choos ${ }^{1}$ some element $a \in g^{-1}(b)$ and declare that $f(b)$ is equal to that a. The result is an injective function, because $f(b)$ satisfies the property that $g(f(b))=b$ - therefore if $f(b)=f\left(b^{\prime}\right)$ then $g(f(b))=g\left(f\left(b^{\prime}\right)\right)$ which means $b=b^{\prime}$.
3. Prove that

$$
\left|2^{\mathbb{N}}\right|=\left|2^{\mathbb{N}} \times 2^{\mathbb{N}}\right|
$$

by finding an explicit bijection. (Remember that 2^{A} is the set of functions from A to $\{0,1\}$.)

Proof. In this proof, 'function' will be used to mean a function $\mathbb{N} \rightarrow\{0,1\}$. Given any function f, define functions $f_{\text {odd }}$ and $f_{\text {even }}$ by

$$
f_{\text {odd }}(n)=f(2 n-1) \quad f_{\text {even }}(n)=f(2 n)
$$

Then we have

$$
\begin{gathered}
H: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} \times 2^{\mathbb{N}} \\
f \mapsto\left(f_{\text {odd }}, f_{\text {even }}\right)
\end{gathered}
$$

If f and g are functions such that $\left(f_{\text {odd }}, f_{\text {even }}\right)=\left(g_{\text {odd }}, g_{\text {even }}\right)$, then $f(2 n-1)=$ $g(2 n-1)$ for every n and $f(2 n)=g(2 n)$ for every n. It then follows that $f=g$. Thus, H is injective.

[^0]If (f, g) is any pair of functions, then one may consider the function h defined by

$$
h(n)= \begin{cases}f\left(\frac{n+1}{2}\right) & n \text { odd } \\ g\left(\frac{n}{2}\right) & n \text { even }\end{cases}
$$

and one sees that $h_{\text {odd }}=f$ and $h_{\text {even }}=g$, i.e. $H(h)=(f, g)$. Thus, H is surjective.

Note: A corollary of this fact is that $|\mathbb{R}|=|\mathbb{R} \times \mathbb{R}|$.
4. Let A, B, and C be any three sets, and let A, B be disjoint. Prove that $\left|C^{A \cup B}\right|=$ $\left|C^{A} \times C^{B}\right|$, or written another way,

$$
|\operatorname{Fun}(A \cup B, C)|=|\operatorname{Fun}(A, C) \times \operatorname{Fun}(B, C)|
$$

Proof. Given a function $f: A \cup B \rightarrow C$, one obtains functions $f_{A}: A \rightarrow C$ and $f_{B}: B \rightarrow C$ by restricting the action of f. Thus, we have

$$
\begin{aligned}
\Phi: \operatorname{Fun}(A \cup B, C) & \rightarrow \operatorname{Fun}(A, C) \times \operatorname{Fun}(B, C) \\
f & \mapsto\left(f_{A}, f_{B}\right)
\end{aligned}
$$

Similarly, if one has functions $g: A \rightarrow C$ and $h: B \rightarrow C$, one obtains a function $g \cup h: A \cup B \rightarrow C$ defined by

$$
(g \cup h)(x)= \begin{cases}g(x) & x \in A \\ h(x) & x \in B\end{cases}
$$

Thus, we have

$$
\begin{gathered}
\Theta: \operatorname{Fun}(A, C) \times \operatorname{Fun}(B, C) \rightarrow \operatorname{Fun}(A \cup B, C) \\
(g, h) \mapsto g \cup h
\end{gathered}
$$

It's easy to check that Θ and Φ are inverses of one another, and so both are bijections.
5. (More challenging) Prove that $\left|C^{A \times B}\right|=\left|\left(C^{A}\right)^{B}\right|$, or written another way,

$$
|\operatorname{Fun}(A \times B, C)|=|\operatorname{Fun}(B, \operatorname{Fun}(A, C))|
$$

Proof. First, here's a function

$$
\Phi: \operatorname{Fun}(B, \operatorname{Fun}(A, C)) \rightarrow \operatorname{Fun}(A \times B, C)
$$

Suppose that we have a function $f: B \rightarrow \operatorname{Fun}(A, C)$. Then one obtains a function $\Phi(f): A \times B \rightarrow C$ by

$$
\Phi(f)(a, b)=(f(b))(a)
$$

Next, here's a function

$$
\Theta: \operatorname{Fun}(A \times B, C) \rightarrow \operatorname{Fun}(B, \operatorname{Fun}(A, C))
$$

Suppose that we have a function $g: A \times B \rightarrow C$. Then we obtain a function $\Theta(g): B \rightarrow \operatorname{Fun}(A, C)$ by

$$
(\Theta(g)(b))(a)=g(a, b)
$$

It's fairly easy to check that Φ and Θ are inverses of one another.

[^0]: ${ }^{1}$ This is the step which requires the Axiom of Choice.

