MATH 220.201 CLASS 20 QUESTIONS

1. (a) Let \mathbb{Q}^{+}denote the set of positive rational numbers. Prove that there exists a surjective function $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}^{+}$.

Solution: There's such a function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}^{+}$given by

$$
f((a, b))=a / b
$$

It is surjective because every positive rational number can be written as a fraction with positive numerator and denominator.
(b) Deduce that there exists a surjective function $\mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Q}$.

Solution: One can again define a function $f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Q}$ by $f((a, b))=a / b$. It is well-defined as $b \neq 0$. It is surjective because every rational number can be written as a fraction (with top and bottom both integers) with positive denominator.
(c) Show that there is an injective function $\mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{N}$.

Solution: Any rational number q can be written uniquely in the form $q=\frac{a}{b}$ where $b>0$ and a, b have no common factors. Because this is unique, we get a function $\mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{N}$. The function is clearly injective because two different rational numbers can't be given by the same fraction.
2. For any integer k, let $k^{\mathbb{N}}$ denote the set of functions $\mathbb{N} \rightarrow\{1,2, \ldots, k\}$. We'll prove in class today that $2^{\mathbb{N}}$ is uncountable.
(a) Explain why there is a bijection between $2^{\mathbb{N}}$ and $\mathcal{P}(N)$, the power set of \mathbb{N}.

Solution: Consider the function $\theta: 2^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$ given as follows. Suppose that $f \in 2^{\mathbb{N}}$. Then $f^{-1}(1)$ is a subset of \mathbb{N}, and we let $\theta(f)=f^{-1}(1)$.
In the other direction, consider the function $\varphi: \mathcal{P}(\mathbb{N}) \rightarrow 2^{\mathcal{N}}$ given as follows. Suppose that $S \in \mathcal{P}(\mathbb{N})$. Then one may define a function $\varphi(S) ; \mathcal{N} \rightarrow\{1,2\}$ by

$$
(\varphi(S))(n)= \begin{cases}1 & n \in S \\ 2 & n \notin S\end{cases}
$$

Let $\varphi(S)$ be this function.
We have defined functions $\theta: 2^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N})$ and $\varphi: \mathcal{P}(\mathbb{N}) \rightarrow 2^{\mathcal{N}}$. We will now show they are inverse functions. First, we show that $\varphi(\theta(f))=f$ for any
$f \in 2^{\mathbb{N}}$. For any $n \in \mathbb{N}$,

$$
(\varphi(\theta(f)))(n)= \begin{cases}1 & n \in f^{-1}(1) \\ 2 & n \notin f^{-1}(1)\end{cases}
$$

It is clear that the function $\varphi(\theta(f))$ is equal to f. Now we check that $\theta(\varphi(S))=S . \quad \theta(\varphi(S))=\varphi(S)^{-1}(1)$ which equals S by the definition of φ. Thus, $\theta(\varphi(S))=S$ as desired.
(b) Show that there is a surjective function $10^{\mathbb{N}} \rightarrow[0,1]$, where $[0,1]$ is the interval of real numbers x such that $0 \leq x \leq 1$.

Solution: We'll instead consider functions from \mathbb{N} to the set $\{0,1,2, \ldots, 9\}$, as that set is bijective with $10^{\mathbb{N}}$. Consider the function which sends a function

$$
f: \mathbb{N} \rightarrow\{0,1,2, \ldots, 9\}
$$

to the sum $\sum_{n=1}^{\infty} \frac{f(n)}{10^{n}}$. In other words, it sends the function $f(-)$ to the decimal number

$$
f(-) \mapsto 0 . f(1) f(2) f(3) f(4) \ldots
$$

This function is surjective because every real number in $[0,1]$ has a decimal representation of this form (for the number 1 , note that $1=0.999 \ldots$).
(c) Show that, for any positive integer k, there is a surjective function $k^{\mathbb{N}} \rightarrow$ $[0,1]$.

Solution: Do the same thing but base k instead of base 10.

$$
f(-) \mapsto \sum_{n=1}^{\infty} \frac{f(n)}{k^{n}}
$$

3. Let $S \subset \mathcal{P}(\mathbb{N})$ be the set of finite subsets of \mathbb{N}. Prove that S is denumerable. Solution 1:

Lemma 0.1. Let $A_{1}, A_{2}, A_{3}, \ldots$ be a sequence of disjoint, denumerable sets. Then $A_{1} \cup A_{2} \cup A_{3} \cup \cdots$ is denumerable.

Proof of Lemma. The assumption is that there is a bijection $f_{n}: \mathbb{N} \rightarrow A_{n}$ for every $n \in \mathbb{N}$. Then there is a bijection

$$
\mathbb{N} \times \mathbb{N} \rightarrow \bigcup_{n=1}^{\infty} A_{n}
$$

which maps $\{n\} \times \mathbb{N}$ bijectively to A_{n}. Compose this with the bijection ${ }^{1} \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ and we obtain a bijection $\mathbb{N} \rightarrow \bigcup_{n=1}^{\infty} A_{n}$.
Lemma 0.2. Let $S_{1}, S_{2}, S_{3}, \ldots$ be a sequence of nonempty, disjoint, finite sets. Then $S_{1} \cup S_{2} \cup S_{3} \cup \cdots$ is denumerable.
Proof. Let a_{n} be the size of set S_{n} for each n. Then we can form bijections

$$
\begin{gathered}
\left\{1,2, \ldots, a_{1}\right\} \rightarrow S_{1} \\
\left\{a_{1}+1, a_{1}+2, \ldots, a_{1}+a_{2}\right\} \rightarrow S_{2} \\
\left\{a_{1}+a_{2}+1, a_{1}+a_{2}+2, \ldots, a_{1}+a_{2}+a_{3}\right\} \rightarrow S_{3}
\end{gathered}
$$

Putting these together gives a bijection from \mathbb{N} to $S_{1} \cup S_{2} \cup S_{3} \cup \cdots$.
Proof of Question 3. For each n, let A_{n} denote the set of n-element subsets of \mathbb{N}. By the first Lemma, it suffices to show that, for any n, A_{n} is denumerable.

For every natural number $m \geq n$, let B_{m} be the set of n-element subsets of \mathbb{N} with largest element equal to m. So for example, B_{n} consists of a single element, B_{n+1} consists of $n+1$ elements, and so on. Then A_{n} is the disjoint union of $B_{n}, B_{n+1}, B_{n+2}, \ldots$ and each B_{m} is finite and nonempty. By the second Lemma, it follows that A_{n} is denumerable, as desired.

Solution 2: There is a function

$$
f: S \rightarrow \mathbb{Q}
$$

which is given by $f(S)=\sum_{n \in S} \frac{1}{1^{n}}$. This is easily seen to be an injective function, because no rational number has two different finite-length decimal representations. Thus, $|S| \leq|\mathbb{Q}|$. Since \mathbb{Q} is denumerable, and S is an infinite set, S is also denumerable.

[^0]
[^0]: ${ }^{1}$ We constructed this in a previous class, but for completeness I will describe it here. The inverse bijection $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is given by

 $$
 f((i, j))=\frac{(i+j)(i+j+1)}{2}-i+1
 $$

 Another possible bijection $g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is by the formula

 $$
 g((i, j))=2^{i-1}(2 j-1)
 $$

