MATH 220.201 CLASS 20 QUESTIONS

1. (a) Let \mathbb{Q}^{+}denote the set of positive rational numbers. Prove that there exists a surjective function $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}^{+}$.
(b) Deduce that there exists a surjective function $\mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Q}$.
(c) Show that there is an injective function $\mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{N}$.
2. For any integer k, let $k^{\mathbb{N}}$ denote the set of functions $\mathbb{N} \rightarrow\{1,2, \ldots, k\}$. We'll prove in class today that $2^{\mathbb{N}}$ is uncountable.
(a) Explain why there is a bijection between $2^{\mathbb{N}}$ and $\mathcal{P}(N)$, the power set of \mathbb{N}.
(b) Show that there is a surjective function $10^{\mathbb{N}} \rightarrow[0,1]$, where $[0,1]$ is the interval of real numbers x such that $0 \leq x \leq 1$.
(c) Show that, for any positive integer k, there is a surjective function $k^{\mathbb{N}} \rightarrow$ $[0,1]$.
3. Let $S \subset \mathcal{P}(\mathbb{N})$ be the set of finite subsets of \mathbb{N}. Prove that S is denumerable.
