MATH 220.201 CLASS 19 SOLUTIONS

1. Let $f: A \to B$ and $g: C \to D$ be functions. Then one can form the function

$$f \times g : A \times C \to B \times D$$

(a) Prove that if f is injective and q is injective, then $f \times q$ is injective.

Proof. Suppose that (a,c) and (a',c') are elements of $A \times C$ such that (f(a), q(c)) = (f(a'), q(c')). Then f(a) = f(a') and q(c) = q(c'). Because f is injective, it follows that a = a', and because q is injective, it follows that c = c'. Then (a, c) = (a', c'). Thus, we have proven that $f \times q$ is injective.

(b) The same if both are surjective.

Proof. Suppose that (b, d) is any element of $B \times D$. Because f is surjective, there is some $a \in A$ such that f(a) = b, and because g is surjective, there is some $c \in C$ such that q(c) = d. Then by definition, $f \times q$ sends (a, c) to (b, d).

So we have proven that $f \times g$ is surjective.

(c) Come up with an example where f is injective, q is surjective, and $f \times q$ is neither.

Solution: Let $f : \{0\} \rightarrow \{0,1\}$ be defined by f(0) = 0, and let g : $\{0,1\} \to \{0\}$ be defined by g(0) = g(1) = 0. Then $f \times g : \{(0,0), (0,1)\} \to \{0,1\}$ $\{(0,0), (1,0)\}$ sends both (0,0) and (0,1) to (0,0).

(d) How about an example where f is not bijective, but $f \times g$ is? (Hint: use \emptyset .)

Solution: Let $f: A \to B$ be any function, and let $q: \emptyset \to \emptyset$ be the trivial function consisting of no ordered pairs (check - this is a function!). Then $f \times g : A \times \emptyset \to B \times \emptyset$. But any set time the empty set is the empty set. So $f \times g$ is just the trivial function $\emptyset \to \emptyset$ again.

- 2. Let A, B, and C be sets. Suppose that $g: A \to B, h: A \to B$, and $f: B \to C$ are functions with the property that $f \circ g = f \circ h$.
 - (a) Provide an example of the situation above which shows that q does not necessarily have to equal h.

Solution: Let $A = \{0\}$, $B = \{1, 2\}$, and $g: A \to B$ be defined by g(0) = 1, $h: A \to B$ be defined by h(0) = 2. Let $C = \{3\}$ and let $f: B \to C$ be defined by f(1) = f(2) = 3. Then $f \circ g$ and $f \circ h$ both send 0 to 3, and thus are equal. But g and h are unequal functions.

(b) Prove that if f is injective, then g = h.

Proof. We must show that for any $a \in A$, g(a) = h(a). For any $a \in A$, $(f \circ g)(a) = (f \circ h)(a)$ $\implies f(g(a)) = f(h(a))$ Because f is injective, g(a) = h(a). Thus, we have proven that g = h. \Box