MATH 220.201 CLASS 19 SOLUTIONS

1. Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be functions. Then one can form the function

$$
f \times g: A \times C \rightarrow B \times D
$$

(a) Prove that if f is injective and g is injective, then $f \times g$ is injective.

Proof. Suppose that (a, c) and $\left(a^{\prime}, c^{\prime}\right)$ are elements of $A \times C$ such that $(f(a), g(c))=\left(f\left(a^{\prime}\right), g\left(c^{\prime}\right)\right)$. Then $f(a)=f\left(a^{\prime}\right)$ and $g(c)=g\left(c^{\prime}\right)$. Because f is injective, it follows that $a=a^{\prime}$, and because g is injective, it follows that $c=c^{\prime}$. Then $(a, c)=\left(a^{\prime}, c^{\prime}\right)$.
Thus, we have proven that $f \times g$ is injective.
(b) The same if both are surjective.

Proof. Suppose that (b, d) is any element of $B \times D$. Because f is surjective, there is some $a \in A$ such that $f(a)=b$, and because g is surjective, there is some $c \in C$ such that $g(c)=d$. Then by definition, $f \times g$ sends (a, c) to (b, d).
So we have proven that $f \times g$ is surjective.
(c) Come up with an example where f is injective, g is surjective, and $f \times g$ is neither.

Solution: Let $f:\{0\} \rightarrow\{0,1\}$ be defined by $f(0)=0$, and let g : $\{0,1\} \rightarrow\{0\}$ be defined by $g(0)=g(1)=0$. Then $f \times g:\{(0,0),(0,1)\} \rightarrow$ $\{(0,0),(1,0)\}$ sends both $(0,0)$ and $(0,1)$ to $(0,0)$.
(d) How about an example where f is not bijective, but $f \times g$ is? (Hint: use \emptyset.)

Solution: Let $f: A \rightarrow B$ be any function, and let $g: \emptyset \rightarrow \emptyset$ be the trivial function consisting of no ordered pairs (check - this is a function!). Then $f \times g: A \times \emptyset \rightarrow B \times \emptyset$. But any set time the empty set is the empty set. So $f \times g$ is just the trivial function $\emptyset \rightarrow \emptyset$ again.
2. Let A, B, and C be sets. Suppose that $g: A \rightarrow B, h: A \rightarrow B$, and $f: B \rightarrow C$ are functions with the property that $f \circ g=f \circ h$.
(a) Provide an example of the situation above which shows that g does not necessarily have to equal h.

Solution: Let $A=\{0\}, B=\{1,2\}$, and $g: A \rightarrow B$ be defined by $g(0)=1$, $h: A \rightarrow B$ be defined by $h(0)=2$. Let $C=\{3\}$ and let $f: B \rightarrow C$ be defined by $f(1)=f(2)=3$. Then $f \circ g$ and $f \circ h$ both send 0 to 3 , and thus are equal. But g and h are unequal functions.
(b) Prove that if f is injective, then $g=h$.

Proof. We must show that for any $a \in A, g(a)=h(a)$. For any $a \in A$,

$$
\begin{aligned}
& (f \circ g)(a)=(f \circ h)(a) \\
& \Longrightarrow f(g(a))=f(h(a))
\end{aligned}
$$

Because f is injective, $g(a)=h(a)$. Thus, we have proven that $g=h$.

