MATH 220.201 CLASS 18 QUESTIONS

1. For each of the following pairs of sets A, B, determine whether there are functions from A to B which are one-to-one (injective), onto (surjective), or both (bijective). Do the same with functions from B to A.

Note: For each of these cases, there exist plenty of functions $A \rightarrow B$ which are neither injective nor surjective.
(a) $A=\{1,2,3,4,5\}$ and $B=\{6,7,8,9\}$.

Solution: There exist plenty of surjective functions $f: A \rightarrow B$ (if you are curious, there are 240 of them). One example is given by $f(1)=$ $6, f(2)=7, f(3)=8, f(4)=9, f(5)=9$. Written as ordered pairs, this is $\{(1,6),(2,7),(3,8),(4,9),(5,9)\}$.
There are plenty of injective functions $g: B \rightarrow A$ (if you are curious, there are 120 of them). One example is given by $g(6)=1, g(7)=2, g(8)=3, g(9)=4$. Written as ordered pairs, this is $\{(6,1),(7,2),(8,3),(9,4)\}$.
(b) $A=\mathbb{N}=\{1,2,3, \ldots\}$ and $B=\{2 n: n \in \mathbb{N}\}=\{2,4,6,8, \ldots\}$.

Solution: There are plenty of bijective functions between these two sets. One such function $f: A \rightarrow B$ is given by $f(1)=2, f(2)=4, f(3)=$ $6, f(4)=8, \ldots$, and in general $f(n)=2 n$ for each $n \in A$.
(c) $A=\mathbb{N}$ and $B=\{a+b \sqrt{2}: a \in \mathbb{N}, b \in\{0,1,2\}\}$.

Solution: Again, there are plenty of bijective functions from A to B. Here is an example. (I've drawn double-headed arrows to indicate that the function has an inverse.)

$$
\begin{array}{lll}
1 \longleftrightarrow 1 & 2 \longleftrightarrow 1+\sqrt{2} & 3 \longleftrightarrow 1+2 \sqrt{2} \\
4 \longleftrightarrow 2 & 5 \longleftrightarrow 2+\sqrt{2} & 6 \longleftrightarrow 2+2 \sqrt{2} \\
7 \longleftrightarrow 3 & 8 \longleftrightarrow 3+\sqrt{2} & 9 \longleftrightarrow 3+2 \sqrt{2}
\end{array}
$$

(d) $A=\mathbb{N}$ and $B=\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.

Solution: Again, there is a bijection. Here's a way to reorder the elements of \mathbb{Z} so that this becomes clear

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=\{0,1,-1,2,-2,3,-3, \ldots\}
$$

(e) $A=\mathbb{N}, B=\{2,3,5,7,11, \ldots\}$ is the set of prime numbers.

Solution: Even in this case, the two functions are in bijective correspondence. In fact, here is a more general fact.

Theorem 0.1. Let S be any infinite subset of \mathbb{N}. Then there is a bijection $f: \mathbb{N} \rightarrow S$.

Proof. Define a sequence of elements $x_{1}, x_{2}, x_{3}, \ldots \in S$ by the property that

$$
x_{n}=\text { the least element of }\left(S-\left\{x_{1}, \ldots, x_{n-1}\right\}\right)
$$

For each $n, S-\left\{x_{1}, \ldots, x_{n-1}\right\}$ is a nonempty ${ }^{1}$ subset of \mathbb{N}, and so because \mathbb{N} is well-ordered, $S-\left\{x_{1}, \ldots, x_{n-1}\right\}$ has a least element. Thus, x_{n} is well-defined for each n.
This sequence $x_{1}, x_{2}, x_{3}, \ldots$ defines a function $f: \mathbb{N} \rightarrow S$ by the formula $f(n)=x_{n}$. We claim this function is both injective and surjective, hence bijective.

- Injectivity: for any two natural numbers m, n with $m<n$, we have $x_{m}<x_{n}$ by definition. Hence, the function is injective.
- Surjectivity: Suppose, for a contradiction, that there is some element $x \in S$ which is not in the image of this function - i.e not equal to any x_{i}. Since S is a subset of $\mathbb{N}, x \in \mathbb{N}$. Therefore, there are only finitely many elements of \mathbb{N} which are less than x. It follows that there is some n such that $x_{n}>x$. But this contradicts the definition of x_{n} as the least element of $S-\left\{x_{1}, \ldots, x_{n-1}\right\}$, because x is an element of $S-\left\{x_{1}, \ldots, x_{n-1}\right\}$. Therefore, we have reached a contradiction, and so no such x exists. Therefore, the function is surjective.

2
2. Can you come up with a rigorous definition of what it means for a set to have 'size n '?

Definition 0.2. A set S has size n if there exists a bijection $\{1,2, \ldots, n\} \rightarrow S$.
3. What about what it means for a set to be 'infinite'?

Definition 0.3. A set S is infinite if, for every $n \in \mathbb{N}$, there does not exist any bijection $\{1,2, \ldots, n\} \rightarrow S$.

[^0]4. Let m and n be two positive integers such that $m \leq n$, and suppose that S is a set and there's an injection $\{1, \ldots, n\} \rightarrow S$. Prove that if there is an injection $S \rightarrow\{1, \ldots, m\}$, then $m=n$.

Proof. $n \leq|S| \leq m$. So $n \leq m$ and $m \leq n$, which implies $m=n$.
5. Let S be a set and suppose that there is a bijection $f: \mathbb{N} \rightarrow S$. Prove that if T is any infinite subset of S, then there is a bijection $S \rightarrow T$.

Proof. f^{-1} is a bijection from S to \mathbb{N}. We may consider the set $f^{-1}(T) \subset \mathbb{N}$. By the theorem proved in $1(\mathrm{e})$, there exists a bijective function $g: \mathbb{N} \rightarrow f^{-1}(T)$. Then consider the function $f \circ g \circ f^{-1}: S \rightarrow T$. The following diagram may make it easier to visualize.

It is a composition of three bijections, and therefore it is a bijection.

[^0]: ${ }^{1}$ Because S is infinite
 ${ }^{2}$ It's not true if S is an ordered set in bijection with \mathbb{N}, then you can always construct the bijection $\mathbb{N} \rightarrow S$ in the way described above. See ordinal numbers if you are curious.

