MATH 220.201 CLASS 18 QUESTIONS

1. For each of the following pairs of sets A, B, determine whether there are functions from A to B which are one-to-one (injective), onto (surjective), or both (bijective). Do the same with functions from B to A.

Note: For each of these cases, there exist plenty of functions $A \to B$ which are neither injective nor surjective.

(a) $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, 8, 9\}$.

Solution: There exist plenty of surjective functions $f : A \to B$ (if you are curious, there are 240 of them). One example is given by f(1) = 6, f(2) = 7, f(3) = 8, f(4) = 9, f(5) = 9. Written as ordered pairs, this is $\{(1,6), (2,7), (3,8), (4,9), (5,9)\}$.

There are plenty of injective functions $g: B \to A$ (if you are curious, there are 120 of them). One example is given by g(6) = 1, g(7) = 2, g(8) = 3, g(9) = 4. Written as ordered pairs, this is $\{(6, 1), (7, 2), (8, 3), (9, 4)\}$.

(b) $A = \mathbb{N} = \{1, 2, 3, \ldots\}$ and $B = \{2n : n \in \mathbb{N}\} = \{2, 4, 6, 8, \ldots\}.$

Solution: There are plenty of bijective functions between these two sets. One such function $f : A \to B$ is given by $f(1) = 2, f(2) = 4, f(3) = 6, f(4) = 8, \ldots$, and in general f(n) = 2n for each $n \in A$.

(c) $A = \mathbb{N}$ and $B = \{a + b\sqrt{2} : a \in \mathbb{N}, b \in \{0, 1, 2\}\}.$

Solution: Again, there are plenty of bijective functions from A to B. Here is an example. (I've drawn double-headed arrows to indicate that the function has an inverse.)

$1 \longleftrightarrow 1$	$2 \longleftrightarrow 1 + \sqrt{2}$	$3 \longleftrightarrow 1 + 2\sqrt{2}$
$4 \longleftrightarrow 2$	$5 \longleftrightarrow 2 + \sqrt{2}$	$6 \longleftrightarrow 2 + 2\sqrt{2}$
$7 \longleftrightarrow 3$	$8 \longleftrightarrow 3 + \sqrt{2}$	$9 \longleftrightarrow 3 + 2\sqrt{2}$
	:	

(d) $A = \mathbb{N}$ and $B = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$

Solution: Again, there is a bijection. Here's a way to reorder the elements of \mathbb{Z} so that this becomes clear

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$$

(e) $A = \mathbb{N}, B = \{2, 3, 5, 7, 11, ...\}$ is the set of prime numbers.

Solution: Even in this case, the two functions are in bijective correspondence. In fact, here is a more general fact.

Theorem 0.1. Let S be any infinite subset of \mathbb{N} . Then there is a bijection $f: \mathbb{N} \to S$.

Proof. Define a sequence of elements $x_1, x_2, x_3, \ldots \in S$ by the property that

 x_n = the least element of $(S - \{x_1, \dots, x_{n-1}\})$

For each $n, S - \{x_1, \ldots, x_{n-1}\}$ is a nonempty¹ subset of \mathbb{N} , and so because \mathbb{N} is well-ordered, $S - \{x_1, \ldots, x_{n-1}\}$ has a least element. Thus, x_n is well-defined for each n.

This sequence x_1, x_2, x_3, \ldots defines a function $f : \mathbb{N} \to S$ by the formula $f(n) = x_n$. We claim this function is both injective and surjective, hence bijective.

- Injectivity: for any two natural numbers m, n with m < n, we have $x_m < x_n$ by definition. Hence, the function is injective.
- Surjectivity: Suppose, for a contradiction, that there is some element $x \in S$ which is not in the image of this function i.e not equal to any x_i . Since S is a subset of \mathbb{N} , $x \in \mathbb{N}$. Therefore, there are only finitely many elements of \mathbb{N} which are less than x. It follows that there is some n such that $x_n > x$. But this contradicts the definition of x_n as the least element of $S \{x_1, \ldots, x_{n-1}\}$, because x is an element of $S \{x_1, \ldots, x_{n-1}\}$. Therefore, we have reached a contradiction, and so no such x exists. Therefore, the function is surjective.

2

2. Can you come up with a rigorous definition of what it means for a set to have 'size n'?

Definition 0.2. A set S has size n if there exists a bijection $\{1, 2, ..., n\} \rightarrow S$.

3. What about what it means for a set to be 'infinite'?

Definition 0.3. A set S is infinite if, for every $n \in \mathbb{N}$, there does not exist any bijection $\{1, 2, ..., n\} \rightarrow S$.

¹Because S is infinite

²It's not true if S is an ordered set in bijection with N, then you can always construct the bijection $\mathbb{N} \to S$ in the way described above. See *ordinal numbers* if you are curious.

4. Let m and n be two positive integers such that $m \leq n$, and suppose that S is a set and there's an injection $\{1, \ldots, n\} \to S$. Prove that if there is an injection $S \to \{1, \ldots, m\}$, then m = n.

Proof. $n \leq |S| \leq m$. So $n \leq m$ and $m \leq n$, which implies m = n.

5. Let S be a set and suppose that there is a bijection $f : \mathbb{N} \to S$. Prove that if T is any infinite subset of S, then there is a bijection $S \to T$.

Proof. f^{-1} is a bijection from S to \mathbb{N} . We may consider the set $f^{-1}(T) \subset \mathbb{N}$. By the theorem proved in 1(e), there exists a bijective function $g : \mathbb{N} \to f^{-1}(T)$. Then consider the function $f \circ g \circ f^{-1} : S \to T$. The following diagram may make it easier to visualize.

It is a composition of three bijections, and therefore it is a bijection.