MATH 220.201 CLASS 16 QUESTIONS

1. Proofs

(a) Prove that $5 \mid 3^{4n+1} + 2$ for any nonnegative integer n.

Proof 1. We prove the result by induction on n. The base case (n = 0) is to show that $5 \mid 3^1 + 2$. This is clear.

Now the inductive step. Suppose that $5 \mid 3^{4n+1} + 2$. Then there is some integer k such that $3^{4n+1} + 2 = 5k$. Then

$$3^{4n+1} = 5k - 2 \implies 3^{4n+5} = 81(5k - 2) = 405k - 162$$
$$\implies 3^{4n+5} + 2 = 405k - 160 = 5(81k - 32)$$

Therefore, $5 \mid 3^{4n+5}+2$, which completes the induction.

Proof 2.

$$3^{4n+1} = 3^{4n} \cdot 3^1 = 81^n \cdot 3 \equiv 1^n \cdot 3 \pmod{5} \equiv 3 \pmod{5} \equiv -2 \pmod{5}$$

Thus 5 | $3^{4n+1} + 2$.

(b) Prove that there exists a positive integer N with the following property: every odd integer $n \ge N$ can be written in the form n = 3a + 5b + 7c for some positive integers a, b, c.

Proof. We prove that every odd integer $n \ge 21$ can be written in the form n = 3a + 5b + 7c for some positive integers a, b, c. Let P(n) be the property that n can be written in this form. We use induction, showing that P(21), P(23), P(25) are all true as the base case, and showing $P(n) \implies P(n+6)$ as the inductive step.

• Base case:

$$21 = 3 \cdot 3 + 5 \cdot 1 + 7 \cdot 1$$

$$23 = 3 \cdot 2 + 5 \cdot 2 + 7 \cdot 1$$

$$25 = 3 \cdot 1 + 5 \cdot 3 + 7 \cdot 1$$

• Inductive Step: Suppose that P(n) is true, i.e. n = 3a + 5b + 7cwhere a, b, c are some positive integers. Then n+6 = 3(a+2)+5b+7c. Since a+2, b, c are all positive integers, it follows that P(n+6) is true. This completes the induction.

(c) Prove that if a and b are distinct natural numbers such that \sqrt{a} and \sqrt{b} are both irrational, then $\sqrt{a} + \sqrt{b}$ is also irrational.

Proof. Suppose for a contradiction that $\sqrt{a} + \sqrt{b}$ is rational. Then $(\sqrt{a} + \sqrt{b})^2$ is rational. Write $\sqrt{a} + \sqrt{b} = r$. Then

$$\sqrt{a} = r - \sqrt{b} \implies a = (r - \sqrt{b})^2 = r^2 - 2r\sqrt{b} + b$$

$$\implies \sqrt{b} = \frac{r^2 + b - a}{2r}$$

Since \sqrt{a} and \sqrt{b} are both positive, $\neq 0$, so this is valid. Thus, \sqrt{b} is rational, which contradicts the assumption that \sqrt{b} was irrational! Therefore, $\sqrt{a} + \sqrt{b}$ is irrational.

(d) Recall that the Fibonacci sequence is defined by $F_1 = 1, F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Prove that $2^n \ge F_{n+3}$ for $n \ge 3$.

Proof. We prove the result by induction on n.

- **Base case:** When n = 3, we have $2^3 = 8$ and $F_6 = 8$. So $2^3 \ge F_6$.
- Inductive step: Suppose that $2^n \ge F_{n+3}$ for some $n \ge 3$. Then

$$2^{n+1} = 2^n + 2^n \ge F_{n+3} + F_{n+3} = F_{n+3} + (F_{n+2} + F_{n+1})$$

Since F_{n+1} is positive,

$$F_{n+3} + F_{n+2} + F_{n+1} > F_{n+3} + F_{n+2} = F_{n+4}$$

Therefore, $2^{n+1} \ge F_{n+4}$.

	1	n-1		
(e)	Let $a_1 = 1, a_2 = 2$, and $a_n =$	$\sum (i-1)a_i$ for $n \ge 3$.	Prove that $a_n = (n - $	1)!
		i=1		
	for $n \geq 3$.			

Proof. We use induction on n.

- Base case: When n = 3, $a_3 = 0 \cdot a_1 + 1 \cdot a_2 = 2$ which equals (3-1)!.
- Inductive step: Suppose that $a_n = (n-1)!$. Then

$$a_{n+1} = \sum_{i=1}^{n} (i-1)a_i = \left(\sum_{i=1}^{n-1} (i-1)a_i\right) + (n-1)a_n$$
$$= a_n + (n-1)a_n$$
$$= na_n$$
$$= n \cdot (n-1)!$$
$$= n!$$

(f) Prove that every positive integer can be written in the form $2^a b$ where a is a nonnegative integer and b is an odd integer.

Proof. Suppose, for a contradiction, that there are positive integers which cannot be written in the form given. Let n be the smallest such positive integer. Either n is odd or n is even. n cannot be odd, because it if is, then take a = 0 and b = n, and we have $n = 2^0 \cdot n$ is the form required.

Therefore, n is even, so there is some integer m such that n = 2m. Since n is a positive integer, this means m < n, and so m can be written in the form $m = 2^{a}b$ where a is nonnegative and b is odd. Then $n = 2^{a+1}b$. But this contradicts the assumption that n could not be written in this form!

Therefore, no such positive integer n exists, and so every integer can be written in this form.

2. Equivalence Relations

(a) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x\mathcal{R}y$ iff $x \equiv y \pmod{6}$. Describe the equivalence classes for \mathcal{R} .

Solution: There are six equivalence classes:

$$[0] = \{6k : k \in \mathbb{Z}\}$$

$$[1] = \{6k + 1 : k \in \mathbb{Z}\}$$

$$[2] = \{6k + 2 : k \in \mathbb{Z}\}$$

$$[3] = \{6k + 3 : k \in \mathbb{Z}\}$$

$$[4] = \{6k + 4 : k \in \mathbb{Z}\}$$

$$[5] = \{6k + 5 : k \in \mathbb{Z}\}$$

(b) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x\mathcal{R}y$ iff $x^3 + 3x \equiv y^3 + 3y \pmod{6}$. Describe the equivalence classes for \mathcal{R} .

Solution: For an integer n, let us consider what are the possibilities for $n^3 + 3n \mod 6$.

$$n \equiv 0 \pmod{6} \implies n^3 + 3n \equiv 0 \pmod{6}$$
$$n \equiv 1 \pmod{6} \implies n^3 + 3n \equiv 4 \pmod{6}$$
$$n \equiv 2 \pmod{6} \implies n^3 + 3n \equiv 4 \pmod{6}$$
$$n \equiv 3 \pmod{6} \implies n^3 + 3n = 14 \equiv 2 \pmod{6}$$
$$n \equiv 3 \pmod{6} \implies n^3 + 3n = 36 \equiv 0 \pmod{6}$$
$$n \equiv 4 \pmod{6} \implies n^3 + 3n = 76 \equiv 4 \pmod{6}$$
$$n \equiv 5 \pmod{6} \implies n^3 + 3n = 140 \equiv 2 \pmod{6}$$

Thus, the given relation has three equivalence classes:

 $\{6k : k \in \mathbb{Z}\} \cup \{6k + 3 : k \in \mathbb{Z}\} \\ \{6k + 1 : k \in \mathbb{Z}\} \cup \{6k + 4 : k \in \mathbb{Z}\} \\ \{6k + 2 : k \in \mathbb{Z}\} \cup \{6k + 5 : k \in \mathbb{Z}\}$

You could also write these as $\{3k : k \in \mathbb{Z}\}, \{3k+1 : k \in \mathbb{Z}\}, \{3k+2 : k \in \mathbb{Z}\}.$

(c) Let \mathcal{R} be a relation on \mathbb{Z}_6 defined by $[x]\mathcal{R}[y]$ iff ([x] = [y] or $[x^2] = [y]$). List out the elements of \mathcal{R} as ordered pairs ([x], [y]). Is \mathcal{R} an equivalence relation?

Solution: We have the elements ([0], [0]), ([1], [1]), ([2], [2]), ([3], [3]), ([4], [4]), ([5], [5]) because by definition each ([n], [n]) is in \mathcal{R} . We must also include pairs of the form $([n], [n^2])$. Trying all six possibilities for [n] gives us

([0], [0]), ([1], [1]), ([2], [4]), ([3], [3]), ([4], [4]), ([5], [1])

So in total,

 $\mathcal{R} = \{([0], [0]), ([1], [1]), ([2], [2]), ([3], [3]), ([4], [4]), ([5], [5]), ([2], [4]), ([5], [1])\}\}$

This is not an equivalence relation, as it is not symmetric! I.e. we have pairs ([x], [y]) with the property that $[x^2] = [y]$ but $[y^2] \neq [x]$ - for example, ([2], [4]) and ([5], [1]).

- (1) **Hints**
 - (a) (Proofs a) Proof by induction. There's also a way without induction.
 - (b) (Proofs b) If n is an odd number, then the next odd number is n + 2, then n + 4, then n + 6, and so on. If n can be written in the form 3a + 5b + 7c, can you prove that n + 6 or n + 8 can be written in this form? What about n + 4 or n + 2?
 - (c) (Proofs c) Proof by contradiction.
 - (d) (Proofs d) Proof by induction.
 - (e) (Proofs e) Proof by induction, with base case n = 3.
 - (f) (Proofs f) You can do this by strong induction, or by minimum counterexample.
 - (g) (Equivalence Classes b) If you take an integer x, what are the possibilities for $x^3 + 3x \mod 6$?
 - (h) (Equivalence Classes c) Remember that \mathbb{Z}_6 is just a six-element set. You can think of \mathcal{R} as 'descended' from the relation on \mathbb{Z} given by

$$x\mathcal{R}y \iff (x \equiv y \pmod{6}) \lor (x^2 \equiv y \pmod{6})$$