MATH 220.201 CLASS 16 QUESTIONS

1. Proofs

(a) Prove that $5 \mid 3^{4 n+1}+2$ for any nonnegative integer n.

Proof 1. We prove the result by induction on n. The base case $(n=0)$ is to show that $5 \mid 3^{1}+2$. This is clear.
Now the inductive step. Suppose that $5 \mid 3^{4 n+1}+2$. Then there is some integer k such that $3^{4 n+1}+2=5 k$. Then

$$
\begin{aligned}
3^{4 n+1}=5 k-2 & \Longrightarrow 3^{4 n+5}=81(5 k-2)=405 k-162 \\
& \Longrightarrow 3^{4 n+5}+2=405 k-160=5(81 k-32)
\end{aligned}
$$

Therefore, $5 \mid 3^{4 n+5}+2$, which completes the induction.
Proof 2.
$3^{4 n+1}=3^{4 n} \cdot 3^{1}=81^{n} \cdot 3 \equiv 1^{n} \cdot 3 \quad(\bmod 5) \equiv 3 \quad(\bmod 5) \equiv-2 \quad(\bmod 5)$
Thus $5 \mid 3^{4 n+1}+2$.
(b) Prove that there exists a positive integer N with the following property: every odd integer $n \geq N$ can be written in the form $n=3 a+5 b+7 c$ for some positive integers a, b, c.

Proof. We prove that every odd integer $n \geq 21$ can be written in the form $n=3 a+5 b+7 c$ for some positive integers a, b, c. Let $P(n)$ be the property that n can be written in this form. We use induction, showing that $P(21), P(23), P(25)$ are all true as the base case, and showing $P(n) \Longrightarrow P(n+6)$ as the inductive step.

- Base case:

$$
\begin{aligned}
& 21=3 \cdot 3+5 \cdot 1+7 \cdot 1 \\
& 23=3 \cdot 2+5 \cdot 2+7 \cdot 1 \\
& 25=3 \cdot 1+5 \cdot 3+7 \cdot 1
\end{aligned}
$$

- Inductive Step: Suppose that $P(n)$ is true, i.e. $n=3 a+5 b+7 c$ where a, b, c are some positive integers. Then $n+6=3(a+2)+5 b+7 c$. Since $a+2, b, c$ are all positive integers, it follows that $P(n+6)$ is true. This completes the induction.
(c) Prove that if a and b are distinct natural numbers such that \sqrt{a} and \sqrt{b} are both irrational, then $\sqrt{a}+\sqrt{b}$ is also irrational.

Proof. Suppose for a contradiction that $\sqrt{a}+\sqrt{b}$ is rational. Then $(\sqrt{a}+\sqrt{b})^{2}$ is rational. Write $\sqrt{a}+\sqrt{b}=r$. Then

$$
\begin{aligned}
\sqrt{a}=r-\sqrt{b} & \Longrightarrow a=(r-\sqrt{b})^{2}=r^{2}-2 r \sqrt{b}+b \\
& \Longrightarrow \sqrt{b}=\frac{r^{2}+b-a}{2 r}
\end{aligned}
$$

Since \sqrt{a} and \sqrt{b} are both positive, $\neq 0$, so this is valid. Thus, \sqrt{b} is rational, which contradicts the assumption that \sqrt{b} was irrational! Therefore, $\sqrt{a}+\sqrt{b}$ is irrational.
(d) Recall that the Fibonacci sequence is defined by $F_{1}=1, F_{2}=1$, and $F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 3$. Prove that $2^{n} \geq F_{n+3}$ for $n \geq 3$.

Proof. We prove the result by induction on n.

- Base case: When $n=3$, we have $2^{3}=8$ and $F_{6}=8$. So $2^{3} \geq F_{6}$.
- Inductive step: Suppose that $2^{n} \geq F_{n+3}$ for some $n \geq 3$. Then

$$
2^{n+1}=2^{n}+2^{n} \geq F_{n+3}+F_{n+3}=F_{n+3}+\left(F_{n+2}+F_{n+1}\right)
$$

Since F_{n+1} is positive,

$$
F_{n+3}+F_{n+2}+F_{n+1}>F_{n+3}+F_{n+2}=F_{n+4}
$$

Therefore, $2^{n+1} \geq F_{n+4}$.
(e) Let $a_{1}=1, a_{2}=2$, and $a_{n}=\sum_{i=1}^{n-1}(i-1) a_{i}$ for $n \geq 3$. Prove that $a_{n}=(n-1)$! for $n \geq 3$.

Proof. We use induction on n.

- Base case: When $n=3, a_{3}=0 \cdot a_{1}+1 \cdot a_{2}=2$ which equals ($3-1$)!.
- Inductive step: Suppose that $a_{n}=(n-1)$!. Then

$$
\begin{aligned}
a_{n+1}=\sum_{i=1}^{n}(i-1) a_{i} & =\left(\sum_{i=1}^{n-1}(i-1) a_{i}\right)+(n-1) a_{n} \\
& =a_{n}+(n-1) a_{n} \\
& =n a_{n} \\
& =n \cdot(n-1)! \\
& =n!
\end{aligned}
$$

(f) Prove that every positive integer can be written in the form $2^{a} b$ where a is a nonnegative integer and b is an odd integer.

Proof. Suppose, for a contradiction, that there are positive integers which cannot be written in the form given. Let n be the smallest such positive integer. Either n is odd or n is even. n cannot be odd, because it if is, then take $a=0$ and $b=n$, and we have $n=2^{0} \cdot n$ is the form required.

Therefore, n is even, so there is some integer m such that $n=2 m$. Since n is a positive integer, this means $m<n$, and so m can be written in the form $m=2^{a} b$ where a is nonnegative and b is odd. Then $n=2^{a+1} b$. But this contradicts the assumption that n could not be written in this form!

Therefore, no such positive integer n exists, and so every integer can be written in this form.

2. Equivalence Relations

(a) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x \mathcal{R} y$ iff $x \equiv y(\bmod 6)$. Describe the equivalence classes for \mathcal{R}.

Solution: There are six equivalence classes:

$$
\begin{gathered}
{[0]=\{6 k: k \in \mathbb{Z}\}} \\
{[1]=\{6 k+1: k \in \mathbb{Z}\}} \\
{[2]=\{6 k+2: k \in \mathbb{Z}\}} \\
{[3]=\{6 k+3: k \in \mathbb{Z}\}} \\
{[4]=\{6 k+4: k \in \mathbb{Z}\}} \\
{[5]=\{6 k+5: k \in \mathbb{Z}\}}
\end{gathered}
$$

(b) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x \mathcal{R} y$ iff $x^{3}+3 x \equiv y^{3}+3 y(\bmod 6)$. Describe the equivalence classes for \mathcal{R}.

Solution: For an integer n, let us consider what are the possibilities for $n^{3}+3 n \bmod 6$.

$$
\begin{aligned}
& n \equiv 0 \quad(\bmod 6) \Longrightarrow n^{3}+3 n \equiv 0 \quad(\bmod 6) \\
& n \equiv 1 \quad(\bmod 6) \Longrightarrow n^{3}+3 n \equiv 4 \quad(\bmod 6) \\
& n \equiv 2(\bmod 6) \Longrightarrow n^{3}+3 n=14 \equiv 2(\bmod 6) \\
& n \equiv 3 \quad(\bmod 6) \Longrightarrow n^{3}+3 n=36 \equiv 0 \quad(\bmod 6) \\
& n \equiv 4 \quad(\bmod 6) \Longrightarrow n^{3}+3 n=76 \equiv 4 \quad(\bmod 6) \\
& n \equiv 5(\bmod 6) \Longrightarrow n^{3}+3 n=140 \equiv 2 \quad(\bmod 6)
\end{aligned}
$$

Thus, the given relation has three equivalence classes:

$$
\begin{gathered}
\{6 k: k \in \mathbb{Z}\} \cup\{6 k+3: k \in \mathbb{Z}\} \\
\{6 k+1: k \in \mathbb{Z}\} \cup\{6 k+4: k \in \mathbb{Z}\} \\
\{6 k+2: k \in \mathbb{Z}\} \cup\{6 k+5: k \in \mathbb{Z}\}
\end{gathered}
$$

You could also write these as $\{3 k: k \in \mathbb{Z}\},\{3 k+1: k \in \mathbb{Z}\},\{3 k+2: k \in \mathbb{Z}\}$.
(c) Let \mathcal{R} be a relation on \mathbb{Z}_{6} defined by $[x] \mathcal{R}[y]$ iff $\left([x]=[y]\right.$ or $\left.\left[x^{2}\right]=[y]\right)$. List out the elements of \mathcal{R} as ordered pairs $([x],[y])$. Is \mathcal{R} an equivalence relation?

Solution: We have the elements ([0], [0]), ([1], [1]), ([2], [2]), ([3], [3]), ([4], [4]), ([5], [5]) because by definition each $([n],[n])$ is in \mathcal{R}. We must also include pairs of the form $\left([n],\left[n^{2}\right]\right)$. Trying all six possibilities for $[n]$ gives us

$$
([0],[0]),([1],[1]),([2],[4]),([3],[3]),([4],[4]),([5],[1])
$$

So in total,
$\mathcal{R}=\{([0],[0]),([1],[1]),([2],[2]),([3],[3]),([4],[4]),([5],[5]),([2],[4]),([5],[1])\}$
This is not an equivalence relation, as it is not symmetric! I.e. we have pairs $([x],[y])$ with the property that $\left[x^{2}\right]=[y]$ but $\left[y^{2}\right] \neq[x]$ - for example, ([2], [4]) and ([5], [1]).

(1) Hints

(a) (Proofs a) Proof by induction. There's also a way without induction.
(b) (Proofs b) If n is an odd number, then the next odd number is $n+2$, then $n+4$, then $n+6$, and so on. If n can be written in the form $3 a+5 b+7 c$, can you prove that $n+6$ or $n+8$ can be written in this form? What about $n+4$ or $n+2$?
(c) (Proofs c) Proof by contradiction.
(d) (Proofs d) Proof by induction.
(e) (Proofs e) Proof by induction, with base case $n=3$.
(f) (Proofs f) You can do this by strong induction, or by minimum counterexample.
(g) (Equivalence Classes b) If you take an integer x, what are the possibilities for $x^{3}+3 x \bmod 6 ?$
(h) (Equivalence Classes c) Remember that \mathbb{Z}_{6} is just a six-element set. You can think of \mathcal{R} as 'descended' from the relation on \mathbb{Z} given by

$$
x \mathcal{R} y \Longleftrightarrow(x \equiv y(\bmod 6)) \vee\left(x^{2} \equiv y(\bmod 6)\right)
$$

