MATH 220.201 CLASS 16 QUESTIONS

1. Proofs

(a) Prove that $5 \mid 3^{4 n+1}+2$ for any nonnegative integer n.
(b) Prove that there exists a positive integer N with the following property: every odd integer $n \geq N$ can be written in the form $n=3 a+5 b+7 c$ for some positive integers a, b, c.
(c) Prove that if a and b are distinct natural numbers such that \sqrt{a} and \sqrt{b} are both irrational, then $\sqrt{a}+\sqrt{b}$ is also irrational.
(d) Recall that the Fibonacci sequence is defined by $F_{1}=1, F_{2}=1$, and $F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 3$. Prove that $2^{n} \geq F_{n+3}$ for $n \geq 3$.
(e) Let $a_{1}=1, a_{2}=2$, and $a_{n}=\sum_{i=1}^{n-1}(i-1) a_{i}$ for $n \geq 3$. Prove that $a_{n}=(n-1)$! for $n \geq 3$.
(f) Prove that every positive integer can be written in the form $2^{a} b$ where a is a nonnegative integer and b is an odd integer.

2. Equivalence Relations

(a) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x \mathcal{R} y$ iff $x \equiv y(\bmod 6)$. Describe the equivalence classes for \mathcal{R}.
(b) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x \mathcal{R} y$ iff $x^{3}+3 x \equiv y^{3}+3 y(\bmod 6)$. Describe the equivalence classes for \mathcal{R}.
(c) Let \mathcal{R} be a relation on \mathbb{Z}_{6} defined by $[x] \mathcal{R}[y]$ iff $\left([x]=[y]\right.$ or $\left.\left[x^{2}\right]=[y]\right)$. List out the elements of \mathcal{R} as ordered pairs $([x],[y])$. Is \mathcal{R} an equivalence relation?
(1) Hints
(a) (Proofs a) Proof by induction. There's also a way without induction.
(b) (Proofs b) If n is an odd number, then the next odd number is $n+2$, then $n+4$, then $n+6$, and so on. If n can be written in the form $3 a+5 b+7 c$, can you prove that $n+6$ or $n+8$ can be written in this form? What about $n+4$ or $n+2$?
(c) (Proofs c) Proof by contradiction.
(d) (Proofs d) Proof by induction.
(e) (Proofs e) Proof by induction, with base case $n=3$.
(f) (Proofs f) You can do this by strong induction, or by minimum counterexample.
(g) (Equivalence Classes b) If you take an integer x, what are the possibilities for $x^{3}+3 x \bmod 6 ?$
(h) (Equivalence Classes c) Remember that \mathbb{Z}_{6} is just a six-element set. You can think of \mathcal{R} as 'descended' from the relation on \mathbb{Z} given by

$$
x \mathcal{R} y \Longleftrightarrow(x \equiv y(\bmod 6)) \vee\left(x^{2} \equiv y(\bmod 6)\right)
$$

