MATH 220.201 CLASS 16 QUESTIONS

1. Proofs

(a) Prove that $5 \mid 3^{4n+1} + 2$ for any nonnegative integer *n*.

- (b) Prove that there exists a positive integer N with the following property: every odd integer $n \ge N$ can be written in the form n = 3a + 5b + 7c for some positive integers a, b, c.
- (c) Prove that if a and b are distinct natural numbers such that \sqrt{a} and \sqrt{b} are both irrational, then $\sqrt{a} + \sqrt{b}$ is also irrational.
- (d) Recall that the Fibonacci sequence is defined by $F_1 = 1, F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Prove that $2^n \ge F_{n+3}$ for $n \ge 3$.
- (e) Let $a_1 = 1, a_2 = 2$, and $a_n = \sum_{i=1}^{n-1} (i-1)a_i$ for $n \ge 3$. Prove that $a_n = (n-1)!$ for $n \ge 3$.
- (f) Prove that every positive integer can be written in the form $2^{a}b$ where a is a nonnegative integer and b is an odd integer.

2. Equivalence Relations

- (a) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x\mathcal{R}y$ iff $x \equiv y \pmod{6}$. Describe the equivalence classes for \mathcal{R} .
- (b) Let \mathcal{R} be a relation on \mathbb{Z} defined by $x\mathcal{R}y$ iff $x^3 + 3x \equiv y^3 + 3y \pmod{6}$. Describe the equivalence classes for \mathcal{R} .
- (c) Let \mathcal{R} be a relation on \mathbb{Z}_6 defined by $[x]\mathcal{R}[y]$ iff ([x] = [y] or $[x^2] = [y]$). List out the elements of \mathcal{R} as ordered pairs ([x], [y]). Is \mathcal{R} an equivalence relation?

(1) **Hints**

- (a) (Proofs a) Proof by induction. There's also a way without induction.
- (b) (Proofs b) If n is an odd number, then the next odd number is n + 2, then n + 4, then n + 6, and so on. If n can be written in the form 3a + 5b + 7c, can you prove that n + 6 or n + 8 can be written in this form? What about n + 4 or n + 2?
- (c) (Proofs c) Proof by contradiction.
- (d) (Proofs d) Proof by induction.
- (e) (Proofs e) Proof by induction, with base case n = 3.
- (f) (Proofs f) You can do this by strong induction, or by minimum counterexample.
- (g) (Equivalence Classes b) If you take an integer x, what are the possibilities for $x^3 + 3x \mod 6$?
- (h) (Equivalence Classes c) Remember that \mathbb{Z}_6 is just a six-element set. You can think of \mathcal{R} as 'descended' from the relation on \mathbb{Z} given by

 $x\mathcal{R}y \iff (x \equiv y \pmod{6}) \lor (x^2 \equiv y \pmod{6})$