MATH 220.201 CLASS 15 QUESTIONS

Remember: if A and B are sets, then a relation from A to B is a subset $R \subseteq A \times B$.
A function is a subset $f \subseteq A \times B$ such that for each $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$. We also use the notation $f(a)=b$, and write $f: A \rightarrow B$ to say ' f is a function from A to B. The subset $f \subseteq A \times B$ is called the graph of the function.
A is called the domain of f.
B is called the codomain of f.
The image of a set $C \subseteq A$ (written $f(C)$) is the set $\{b \in B \mid \exists c \in C, f(c)=b\}$.
The range of f is $f(A)$.
The preimage of a set $D \subseteq B$ (written $f^{-1}(D)$) is the set $\{a \in A \mid f(a) \in D\}$.
(1) Prove that the function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is injective, but not surjective.

Proof. First we prove that it is injective. Suppose that $x_{1}, x_{2} \in[0, \infty)$ are such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $x_{1}^{2}=x_{2}^{2}$, and so $\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)=0$. This means that either $x_{1}=-x_{2}$ (impossible unless $x_{1}=x_{2}=0$) or $x_{1}=x_{2}$. Either way, $x_{1}=x_{2}$, and so the function is injective.

To prove the function is not surjective, we see that any negative real number is not in the image. For example, there is no $x \in[0, \infty)$ such that $f(x)=-5$.
(2) Prove that the function $f: \mathbb{R} \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$ is surjective, but not injective.

Proof. First we prove that it is surjective. We must show that for any $y \in[0, \infty)$, there is some $x \in \mathbb{R}$ such that $x^{2}=y$. Just pick $x=\sqrt{y}$.

To prove the function is not injective, notice that $f(3)=f(-3)=9$. These are two different inputs which give the same output, which means the function is not injective.
(3) Prove that the function $f: \mathbb{R} \rightarrow(0, \infty)$ defined by $f(x)=2^{x}$ is injective. (You can also prove that it is surjective without using logarithms, but it involves the Intermediate Value Theorem.)

Proof. Suppose that $x_{1}, x_{2} \in \mathbb{R}$ are any numbers such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $2^{x_{1}}=2^{x_{2}}$, and so $2^{x_{1}-x_{2}}=1$. But if $x_{1}-x_{2}>0$, then $2^{x_{1}-x_{2}}>1$, and if

[^0]$x_{1}-x_{2}<0$, then $2^{x_{1}-x_{2}}<1$. Therefore it must be that $x_{1}-x_{2}=0$, and so $x_{1}=x_{2}$. This proves that the function is injective.
(4) Remember that for any positive integer $n, \mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$ is the set of equivalence classes for the equivalence relation ' $\equiv(\bmod n)$ '.
(a) Prove that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{5}$ defined by $f(x)=[x]$ is surjective, but not injective. (This isn't a trick question, it is just to check that you understand the definitions.

Proof. Pick any element of \mathbb{Z}_{5} - i.e., an equivalence class of elements in \mathbb{Z}. It contains at least one element $x \in \mathbb{Z}$. Then this equivalence class is $[x]$. And so $f(x)=[x]$. Hence, the function f is surjective. It is not injective, though - for example, 1 and 6 both map to the class [1].
(b) Prove that the function $f: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ defined by $f([x])=[3 x+1]$ is a bijection.

Proof. First we'll prove that it's injective. Suppose that $[x]$ and $[y]$ are two equivalence classes (represented by integers x and y) such that $[3 x+1]=$ $[3 y+1]$. This means that

$$
3 x+1 \equiv 3 y+1 \quad(\bmod 5)
$$

Then $5 \mid(3 y+1)-(3 x+1)$. This means $5 \mid 3(y-x)$. Since 5 is prime, and $5 \nmid 3$, this means $5 \mid y-x$, and so $x \equiv y(\bmod 5)$. So $[x]=[y]$. Hence, the function is injective.

Now we prove it's surjective. Suppose that $[y]$ is an equivalence class, where $y \in \mathbb{Z}$.. We must show that $[y]=[3 x+1]$ for some $x \in \mathbb{Z}$. If we let $x=2 y-2$, then

$$
3 x+1=3(2 y-2)+1=6 y-5 \equiv 6 y \equiv y \quad(\bmod 5)
$$

and so we get $[y]=[3 x+1]$. Therefore, the function is surjective.

[^0]: ${ }^{1}$ This proof assumed that we already had the function $\sqrt{ }$. To complete the proof without using this: we can find some small number a such that $a^{2}<y$ and some very large number b such that $b^{2}>y$. Since the function $f(x)=x^{2}$ is continuous, the Intermediate Value Theorem tells us there is some number x between a and b such that $x^{2}=y$.

