MATH 220.201 CLASS 15 QUESTIONS

Remember: if A and B are sets, then a relation from A to B is a subset $R \subseteq A \times B$.
A function is a subset $f \subseteq A \times B$ such that for each $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$. We also use the notation $f(a)=b$, and write $f: A \rightarrow B$ to say ' f is a function from A to B. The subset $f \subseteq A \times B$ is called the graph of the function.
A is called the domain of f.
B is called the codomain of f.
The image of a set $C \subseteq A$ (written $f(C)$) is the set $\{b \in B \mid \exists c \in C, f(c)=b\}$.
The range of f is $f(A)$.
The preimage of a set $D \subseteq B$ (written $f^{-1}(D)$) is the set $\{a \in A \mid f(a) \in D\}$.
(1) Prove that the function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is injective, but not surjective.
(2) Prove that the function $f: \mathbb{R} \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$ is surjective, but not injective.
(3) Prove that the function $f: \mathbb{R} \rightarrow(0, \infty)$ defined by $f(x)=2^{x}$ is injective. (You can also prove that it is surjective without using logarithms, but it involves the Intermediate Value Theorem.)
(4) Remember that for any positive integer $n, \mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$ is the set of equivalence classes for the equivalence relation ' $\equiv(\bmod n)$ '.
(a) Prove that the function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{5}$ defined by $f(x)=[x]$ is surjective, but not injective. (This isn't a trick question, it is just to check that you understand the definitions.
(b) Prove that the function $f: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ defined by $f([x])=[3 x+1]$ is a bijection.

