MATH 220.201 CLASS 14 SOLUTIONS

- (1) For each of the following relations f from A and B, is it a function? If it is, write an expression for f(a) in terms of a. If not, explain why.
 - (a) $A = B = \{1, 2, 3, 4\}, f = \{(1, 2), (2, 3), (1, 3), (4, 4)\}.$

Solution: It is not a function, because (1, 2) and (1, 3) are both in f.

(b) $A = \mathbb{R} - \{1\}, B = \mathbb{R}, f = \{(a, b) | \frac{1}{a-1} = b\}.$

Solution: It is a function, and $f(a) = \frac{1}{a-1}$.

(c) $A = B = \mathbb{N}, f = \{(2n - 1, n) | n \in \mathbb{N}\} \cup \{(2n, n) | n \in \mathbb{N}\}.$

Solution: It is a function, and

$$f(a) = \begin{cases} \frac{a}{2} & \text{if } a \text{ is even} \\ \frac{a+1}{2} & \text{if } a \text{ is odd} mbc \end{cases}$$

This can also be written as $f(a) = \lceil a/2 \rceil$ (called the *ceiling* function of a/2).

Solution: [-3,3]

- (2) Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2$. Determine the following sets.
 - (a) f([0,4]) (c) $f^{-1}([0,9])$

Solution: [0, 16]

(b) f([-1,2]) (d) $f^{-1}([1,4])$

Solution: [0,4]

Solution: [0, 16]

(3) Suppose that A, B are sets and $f : A \to B$ is a function. (a) If $C \subseteq A$, is it necessarily true that $f^{-1}(f(C)) = C$?

Solution: No, not necessarily. Consider the function $f : \{1,2\} \rightarrow \{3,4\}$ defined by f(1) = 4 and f(2) = 4. Then let $C = \{1\}$. Then $f(C) = \{4\}$, and $f^{-1}(f(C)) = \{1,2\}$. In general, $f^{-1}(f(C)) \supseteq C$.

(b) If $D \subseteq B$, is it necessarily true that $f(f^{-1}(D)) = D$?

Solution: No, not necessarily. Consider the same function as above and let $D = \{3\}$. Then $f^{-1}(D) = \emptyset$, and so $f(f^{-1}(D)) = \emptyset$. In general, $f(f^{-1}(D)) \subseteq D$.