MATH 220.201 CLASS 14 SOLUTIONS

(1) For each of the following relations f from A and B, is it a function? If it is, write an expression for $f(a)$ in terms of a. If not, explain why.
(a) $A=B=\{1,2,3,4\}, f=\{(1,2),(2,3),(1,3),(4,4)\}$.

Solution: It is not a function, because $(1,2)$ and $(1,3)$ are both in f.
(b) $A=\mathbb{R}-\{1\}, B=\mathbb{R}, f=\left\{(a, b) \left\lvert\, \frac{1}{a-1}=b\right.\right\}$.

Solution: It is a function, and $f(a)=\frac{1}{a-1}$.
(c) $A=B=\mathbb{N}, f=\{(2 n-1, n) \mid n \in \mathbb{N}\} \cup\{(2 n, n) \mid n \in \mathbb{N}\}$.

Solution: It is a function, and

$$
f(a)= \begin{cases}\frac{a}{2} & \text { if } a \text { is even } \\ \frac{a+1}{2} & \text { if } a \text { is odd } m b c\end{cases}
$$

This can also be written as $f(a)=\lceil a / 2\rceil$ (called the ceiling function of $a / 2$).
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$. Determine the following sets.
(a) $f([0,4])$
(c) $f^{-1}([0,9])$

Solution: $[0,16]$
(b) $f([-1,2])$

Solution: $[0,4]$

Solution: $[-3,3]$
(d) $f^{-1}([1,4])$
(3) Suppose that A, B are sets and $f: A \rightarrow B$ is a function.
(a) If $C \subseteq A$, is it necessarily true that $f^{-1}(f(C))=C$?

Solution: No, not necessarily. Consider the function $f:\{1,2\} \rightarrow\{3,4\}$ defined by $f(1)=4$ and $f(2)=4$. Then let $C=\{1\}$. Then $f(C)=\{4\}$, and $f^{-1}(f(C))=\{1,2\}$. In general, $f^{-1}(f(C)) \supseteq C$.
(b) If $D \subseteq B$, is it necessarily true that $f\left(f^{-1}(D)\right)=D$?

Solution: No, not necessarily. Consider the same function as above and let $D=\{3\}$. Then $f^{-1}(D)=\emptyset$, and so $f\left(f^{-1}(D)\right)=\emptyset$. In general, $f\left(f^{-1}(D)\right) \subseteq$ D.

