MATH 220.201 CLASS 13 QUESTIONS

(1) $S=\mathbb{Z} ; a \sim b$ if $a \mid b$. This is not an equivalence relation. It is reflexive and transitive, but it is not symmetric. For example, $2 \sim 6$ but $6 \nsim 2$.
(2) $S=\mathbb{Z} ; a \sim b$ if either $a \nmid b$ or $b \nmid a$. This is not an equivalence relation, because it is not reflexive. $n \nsim n$ for every n. (In fact, this relation is exactly $a \sim b$ if $a \neq b$.)
(3) $S=\mathbb{Z} ; a \sim b$ if $a \equiv b(\bmod 6)$. This is an equivalence relation.
(4) $S=\mathbb{N}$; $a \sim b$ if a and b have a common prime factor. This is not an equivalence relation. It is reflexive and symmetric, but it is not transitive. $4 \sim 6$ and $6 \sim 9$ but $4 \nsim 9$.
(5) $S=\mathbb{R} ; a \sim b$ if $b-a \in \mathbb{Z}$. This is an equivalence relation.
(6) $S=\mathbb{R} ; a \sim b$ if $|b-a|<1$. This is not an equivalence relation. It is reflexive and symmetric, but it is not transitive. For example, $0 \sim \frac{2}{3}$ and $\frac{2}{3} \sim \frac{4}{3}$ but $0 \nsim \frac{4}{3}$.
(7) $S=\mathbb{R} ; a \sim b$ if $\sqrt{e^{a}+2}=\sqrt{e^{b}+2}$. This is an equivalence relation. In fact, for any function $f(x)$, the relation $a \sim b \Longleftrightarrow f(a)=f(b)$ is an equivalence relation.
(8) $S=\mathbb{Z}$; $a \sim b$ if $3 a+5 b$ is even. This is an equivalence relation. It is equivalent to saying $a \equiv b(\bmod 2)$.
(9) $S=\mathbb{Z}$; $a \sim b$ if $a+b$ is odd. This is not an equivalence relation, because it is not reflexive or transitive. It is equivalent to saying that a and b have opposite parity.
(10) S is the set of lines in the plane; $\ell_{1} \sim \ell_{2}$ if either $\ell_{1}=\ell_{2}$ or $\ell_{1} \| \ell_{2}$. This is an equivalence relation.
(11) S is the set of lines in the plane; $\ell_{1} \sim \ell_{2}$ if either $\ell_{1}=\ell_{2}$ or $\ell_{1} \perp \ell_{2}$. This is not an equivalence relation. It is reflexive and symmetric, but not transitive. For example, the line $x=0$ is perpendicular to the line $y=0$, which is equivalent to the line $x=1$, but the lines $x=0$ and $x=1$ are not equivalent.
(12) S is the set of lines in the plane; $\ell_{1} \sim \ell_{2}$ if $\ell_{1}=\ell_{2}$ or $\ell_{1} \perp \ell_{2}$ or $\ell_{1} \| \ell_{2}$. This is an equivalence relation.
(13) S is the set of lines in \mathbb{R}^{3} containing $(0,0,0) ; \ell_{1} \sim \ell_{2}$ if $\ell_{1}=\ell_{2}$ or $\ell_{1} \perp \ell_{2}$. This is not an equivalence relation. It is reflexive and symmetric, but not transitive. The lines going through the points $(0,1,0)$ and $(0,1,1)$ are both orthogonal to the line going through ($1,0,0$) but these are not orthogonal to each other.

