MATH 220.201 CLASS 13 QUESTIONS

For each of the following relations from S to itself, determine whether or not it is an equivalence relation.
(1) $S=\mathbb{Z} ; a \sim b$ if $a \mid b$.
(2) $S=\mathbb{Z} ; a \sim b$ if either $a \nmid b$ or $b \nmid a$.
(3) $S=\mathbb{Z} ; a \sim b$ if $a \equiv b(\bmod 6)$.
(4) $S=\mathbb{N} ; a \sim b$ if a and b have a common prime factor.
(5) $S=\mathbb{R} ; a \sim b$ if $b-a \in \mathbb{Z}$.
(6) $S=\mathbb{R} ; a \sim b$ if $|b-a|<1$.
(7) $S=\mathbb{R} ; a \sim b$ if $\sqrt{e^{a}+2}=\sqrt{e^{b}+2}$.
(8) $S=\mathbb{Z} ; a \sim b$ if $3 a+5 b$ is even.
(9) $S=\mathbb{Z} ; a \sim b$ if $a+b$ is odd.
(10) S is the set of lines in the plane; $\ell_{1} \sim \ell_{2}$ if either $\ell_{1}=\ell_{2}$ or $\ell_{1}\left\|\ell_{2} \cdot\right\|$
(11) S is the set of lines in the plane; $\ell_{1} \sim \ell_{2}$ if either $\ell_{1}=\ell_{2}$ or $\ell_{1} \perp \ell_{2}{ }^{2}$
(12) S is the set of lines in the plane; $\ell_{1} \sim \ell_{2}$ if $\ell_{1}=\ell_{2}$ or $\ell_{1} \perp \ell_{2}$ or $\ell_{1} \| \ell_{2}$.
(13) S is the set of lines in \mathbb{R}^{3} containing $(0,0,0) ; \ell_{1} \sim \ell_{2}$ if $\ell_{1}=\ell_{2}$ or $\ell_{1} \perp \ell_{2}$.

[^0]
[^0]: ${ }^{1} \ell_{1} \| \ell_{2}$ means ' ℓ_{1} is parallel to ℓ_{2} '.
 ${ }^{2} \ell_{1} \perp \ell_{2}$ means ' ℓ_{1} is orthogonal (perpendicular) to ℓ_{2} '.

