MATH 220.201 CLASS 13 QUESTIONS

For each of the following relations from S to itself, determine whether or not it is an equivalence relation.

- (1) $S = \mathbb{Z}; a \sim b$ if $a \mid b$.
- (2) $S = \mathbb{Z}$; $a \sim b$ if either $a \nmid b$ or $b \nmid a$.
- (3) $S = \mathbb{Z}; a \sim b$ if $a \equiv b \pmod{6}$.
- (4) $S = \mathbb{N}$; $a \sim b$ if a and b have a common prime factor.
- (5) $S = \mathbb{R}; a \sim b$ if $b a \in \mathbb{Z}$.
- (6) $S = \mathbb{R}; a \sim b$ if |b a| < 1.
- (7) $S = \mathbb{R}: a \sim b$ if $\sqrt{e^a + 2} = \sqrt{e^b + 2}$.
- (8) $S = \mathbb{Z}$; $a \sim b$ if 3a + 5b is even.
- (9) $S = \mathbb{Z}; a \sim b$ if a + b is odd.
- (10) S is the set of lines in the plane; $\ell_1 \sim \ell_2$ if either $\ell_1 = \ell_2$ or $\ell_1 \parallel \ell_2$.¹
- (11) S is the set of lines in the plane; $\ell_1 \sim \ell_2$ if either $\ell_1 = \ell_2$ or $\ell_1 \perp \ell_2$.²
- (12) S is the set of lines in the plane; $\ell_1 \sim \ell_2$ if $\ell_1 = \ell_2$ or $\ell_1 \perp \ell_2$ or $\ell_1 \parallel \ell_2$.
- (13) S is the set of lines in \mathbb{R}^3 containing (0,0,0); $\ell_1 \sim \ell_2$ if $\ell_1 = \ell_2$ or $\ell_1 \perp \ell_2$.

 $[\]begin{array}{l} {}^{1}\ell_{1}\mid\mid\ell_{2} \text{ means } `\ell_{1} \text{ is parallel to } \ell_{2}`. \\ {}^{2}\ell_{1}\perp\ell_{2} \text{ means } `\ell_{1} \text{ is orthogonal (perpendicular) to } \ell_{2}`. \end{array}$