MATH 220.201 CLASS 12 QUESTIONS

1. Let a_{1}, a_{2}, \ldots be a sequence defined by $a_{1}=2, a_{2}=1$, and

$$
a_{n+1}=a_{n}+6 a_{n-1}
$$

for $n \geq 2$. Prove that, for all $n, a_{n}=3^{n-1}+(-2)^{n-1}$.
Proof. We prove this by strong induction on n.

- Base Cases: $n=1, n=2$.

$$
\begin{aligned}
& 3^{1-1}+(-2)^{1-1}=1+1=2 \\
& 3^{2-1}+(-2)^{2-1}=3-2=1
\end{aligned}
$$

- Inductive Step: suppose that $a_{k}=3^{k-1}+(-2)^{k-1}$ for $k=1,2, \ldots, n$. We will show that $a_{n+1}=3^{n}+(-2)^{n}$. We have that

$$
\begin{aligned}
a_{n+1}=a_{n}+6 a_{n-1} & =3^{n-1}+(-2)^{n-1}+6 \cdot 3^{n-2}+6 \cdot(-2)^{n-2} \\
& =(3+6) 3^{n-2}+(-2+6)(-2)^{n-2} \\
& =9 \cdot 3^{n-2}+4 \cdot(-2)^{n-2}=3^{n}+(-2)^{n}
\end{aligned}
$$

This completes the induction.
2. Let a_{1}, a_{2}, \ldots be a sequence defined by $a_{1}=1, a_{2}=2$, and

$$
a_{n+1}=2 a_{n}-a_{n-1}+2
$$

for all $n \geq 2$. Conjecture a formula for a_{n} and then prove your formula.
Proof. We will prove that $a_{n}=(n-1)^{2}+1$ for all $n \in \mathbb{N}$. We proceed by induction on n.

- Base cases: $n=1,2.1=0^{2}+1$ and $2=1^{2}+1$.
- Inductive step: suppose that $a_{k}=(k-1)^{2}+1$ for $k=1,2, \ldots, n$. We will show that $a_{n+1}=n^{2}+1$. We have that

$$
\begin{aligned}
a_{n+1}=2 a_{n}-a_{n-1}+2 & =2(n-1)^{2}+2-(n-2)^{2}-1+3 \\
& =2 n^{2}-4 n+2-\left(n^{2}-4 n+4\right)+3 \\
& =n^{2}+1
\end{aligned}
$$

This completes the induction.
3. For any positive integer, n is called prime if $n \geq 2$ and there exist no integers a such that $1<a<n$ and $a \mid n$. Prime numbers are usually denoted by the letter p.

Prove that any integer $n \geq 2$ is either prime or can be written as a product of (not necessarily distinct) primes.

Proof. Suppose, for a contradiction, that there is some integer greater than or equal to 2 which is neither prime nor a product of primes. Let n be the least such integer. Then because n is not prime, there exists some $a \in \mathbb{Z}$ such that $1<a<n$ and $a \mid n$. So there is some $b \in \mathbb{Z}$ such that $n=a b$. Because $a>1$, $b<n$, and because $a<n, b>1$. By assumption, a is either prime or is a product of primes. Similarly, b is either prime or is a product of primes. Therefore, n is a product of primes. This contradicts our assumption about n.

Therefore, no such n exists, which completes the proof.
4. (Binary Representation) Prove that any positive integer n can be written as

$$
n=2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{k}}
$$

for some integers i_{1}, \ldots, i_{k} with the property that $0 \leq i_{1}<i_{2}<\cdots<i_{k}$. (You may assume the fact that for any positive integer n, there is a unique greatest integer i such that $2^{i} \leq n$.)

Can you prove this representation is unique?
Proof. Call a sum of powers of 2 as shown above binary representation. We prove by strong induction on n that every positive integer n has a binary representation.

- Base case: $n=1.1=2^{0}$.
- Inductive step: Let n be an integer greater than 1 , and suppose that $1,2, \ldots, n-$ 1 all have binary representations. Let i be the greatest integer with the property that $2^{i} \leq n$. Then, $n-2^{i} \geq 0$. If $n-2^{i}=0$, then we are done as $n=2^{i}$. If not, then $1 \leq n-2^{i} \leq n-1$, and therefore $n-2^{i}$ can be written in the form

$$
n-2^{i}=2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{k}}
$$

where $i_{1}, i_{2}, \ldots, i_{k}$ are integers such that $0 \leq i_{1}<i_{2}<\cdots<i_{k}$. We have that $i_{k}<i$, because if $i_{k} \geq i$, we would have $n-2^{i} \geq 2^{i_{k}} \geq 2^{i} \Longrightarrow n \geq 2^{i+1}$ which contradicts the maximality of i. Therefore,

$$
n=2^{i_{1}}+2^{i_{2}}+\cdots+2^{i_{k}}+2^{i}
$$

is a binary representation of n. This completes the proof.

Proof that binary representation is unique. Suppose that some positive integer has two binary representations. Let n be the smallest such positive integer, and suppose it has two nonidentical binary representations

$$
2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{k}}=n=2^{j_{1}}+2^{j_{2}}+\ldots+2^{j_{\ell}}
$$

If $i_{1}=j_{1}$, then we have two binary representations

$$
2^{i_{2}}+\ldots+2^{i_{k}}=n-2^{i_{1}}=n-2^{j_{1}}=2^{j_{2}}+\ldots+2^{j_{\ell}}
$$

By the assumption about the minimality of n, the two representations must be the same, and therefore, our two binary representations of n are the same, which is a contradiction. Hence, assume that $i_{1} \neq j_{1}$. WLOG, $i_{1}<j_{1}$. Then

$$
\begin{gathered}
2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{k}} \equiv 2^{i_{1}} \quad\left(\bmod 2^{i_{1}+1}\right) \\
2^{j_{1}}+2^{j_{2}}+\ldots+2^{j_{\ell}} \equiv 0 \quad\left(\bmod 2^{i_{1}+1}\right)
\end{gathered}
$$

which is a contradiction, because the two sums are equal. Thus, no such n exists, which proves the result.

