MATH 220.201 CLASS 12 QUESTIONS

1. Let a_1, a_2, \ldots be a sequence defined by $a_1 = 2, a_2 = 1$, and

$$a_{n+1} = a_n + 6a_{n-1}$$

for $n \ge 2$. Prove that, for all $n, a_n = 3^{n-1} + (-2)^{n-1}$.

Proof. We prove this by strong induction on n.

• Base Cases: n = 1, n = 2.

$$3^{1-1} + (-2)^{1-1} = 1 + 1 = 2$$

 $3^{2-1} + (-2)^{2-1} = 3 - 2 = 1$

• Inductive Step: suppose that $a_k = 3^{k-1} + (-2)^{k-1}$ for k = 1, 2, ..., n. We will show that $a_{n+1} = 3^n + (-2)^n$. We have that

$$a_{n+1} = a_n + 6a_{n-1} = 3^{n-1} + (-2)^{n-1} + 6 \cdot 3^{n-2} + 6 \cdot (-2)^{n-2}$$
$$= (3+6)3^{n-2} + (-2+6)(-2)^{n-2}$$
$$= 9 \cdot 3^{n-2} + 4 \cdot (-2)^{n-2} = 3^n + (-2)^n$$

This completes the induction.

2. Let a_1, a_2, \ldots be a sequence defined by $a_1 = 1, a_2 = 2$, and

$$a_{n+1} = 2a_n - a_{n-1} + 2$$

for all $n \geq 2$. Conjecture a formula for a_n and then prove your formula.

Proof. We will prove that $a_n = (n-1)^2 + 1$ for all $n \in \mathbb{N}$. We proceed by induction on n.

- Base cases: n = 1, 2. $1 = 0^2 + 1$ and $2 = 1^2 + 1$.
- Inductive step: suppose that $a_k = (k-1)^2 + 1$ for k = 1, 2, ..., n. We will show that $a_{n+1} = n^2 + 1$. We have that

$$a_{n+1} = 2a_n - a_{n-1} + 2 = 2(n-1)^2 + 2 - (n-2)^2 - 1 + 3$$
$$= 2n^2 - 4n + 2 - (n^2 - 4n + 4) + 3$$
$$= n^2 + 1$$

This completes the induction.

3. For any positive integer, n is called *prime* if $n \ge 2$ and there exist no integers a such that 1 < a < n and a|n. Prime numbers are usually denoted by the letter p.

Prove that any integer $n \ge 2$ is either prime or can be written as a product of (not necessarily distinct) primes.

Proof. Suppose, for a contradiction, that there is some integer greater than or equal to 2 which is neither prime nor a product of primes. Let n be the least such integer. Then because n is not prime, there exists some $a \in \mathbb{Z}$ such that 1 < a < n and a|n. So there is some $b \in \mathbb{Z}$ such that n = ab. Because a > 1, b < n, and because a < n, b > 1. By assumption, a is either prime or is a product of primes. Therefore, n is a product of primes. Therefore, n is a product of primes. This contradicts our assumption about n.

Therefore, no such n exists, which completes the proof.

4. (Binary Representation) Prove that any positive integer n can be written as

$$n = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_k}$$

for some integers i_1, \ldots, i_k with the property that $0 \leq i_1 < i_2 < \cdots < i_k$. (You may assume the fact that for any positive integer n, there is a unique greatest integer i such that $2^i \leq n$.)

Can you prove this representation is *unique*?

Proof. Call a sum of powers of 2 as shown above *binary representation*. We prove by strong induction on n that every positive integer n has a binary representation.

- Base case: n = 1. $1 = 2^0$.
- Inductive step: Let n be an integer greater than 1, and suppose that $1, 2, \ldots, n-1$ all have binary representations. Let i be the greatest integer with the property that $2^i \leq n$. Then, $n-2^i \geq 0$. If $n-2^i = 0$, then we are done as $n = 2^i$. If not, then $1 \leq n-2^i \leq n-1$, and therefore $n-2^i$ can be written in the form

$$n - 2^i = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_k}$$

where i_1, i_2, \ldots, i_k are integers such that $0 \leq i_1 < i_2 < \cdots < i_k$. We have that $i_k < i$, because if $i_k \geq i$, we would have $n - 2^i \geq 2^{i_k} \geq 2^i \implies n \geq 2^{i+1}$ which contradicts the maximality of *i*. Therefore,

$$n = 2^{i_1} + 2^{i_2} + \dots + 2^{i_k} + 2^i$$

is a binary representation of n. This completes the proof.

Proof that binary representation is unique. Suppose that some positive integer has two binary representations. Let n be the smallest such positive integer, and suppose it has two nonidentical binary representations

$$2^{i_1} + 2^{i_2} + \ldots + 2^{i_k} = n = 2^{j_1} + 2^{j_2} + \ldots + 2^{j_k}$$

If $i_1 = j_1$, then we have two binary representations

$$2^{i_2} + \ldots + 2^{i_k} = n - 2^{i_1} = n - 2^{j_1} = 2^{j_2} + \ldots + 2^{j_\ell}$$

By the assumption about the minimality of n, the two representations must be the same, and therefore, our two binary representations of n are the same, which is a contradiction. Hence, assume that $i_1 \neq j_1$. WLOG, $i_1 < j_1$. Then

$$2^{i_1} + 2^{i_2} + \ldots + 2^{i_k} \equiv 2^{i_1} \pmod{2^{i_1+1}}$$
$$2^{j_1} + 2^{j_2} + \ldots + 2^{j_\ell} \equiv 0 \pmod{2^{i_1+1}}$$

which is a contradiction, because the two sums are equal. Thus, no such n exists, which proves the result. \Box