MATH 220.201 CLASS 12 QUESTIONS

1. Let a_1, a_2, \ldots be a sequence defined by $a_1 = 2, a_2 = 1$, and

$$a_{n+1} = a_n + 6a_{n-1}$$

for $n \ge 2$. Prove that, for all $n, a_n = 3^{n-1} + (-2)^{n-1}$.

2. Let a_1, a_2, \ldots be a sequence defined by $a_1 = 1, a_2 = 2$, and

$$a_{n+1} = a_n + a_{n-1} + 1$$

for all $n \geq 2$. Conjecture a formula for a_n and then prove your formula.

3. For any positive integer, n is called *prime* if $n \ge 2$ and there exist no integers a such that 1 < a < n and a|n. Prime numbers are usually denoted by the letter p.

Prove that any integer $n \ge 2$ is either prime or can be written as a product of (not necessarily distinct) primes.

4. (Binary Representation) Prove that any positive integer n can be written as

$$n = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_k}$$

for some integers i_1, \ldots, i_k with the property that $0 \leq i_1 < i_2 < \cdots < i_k$. (You may assume the fact that for any positive integer n, there is a unique greatest integer i such that $2^i \leq n$.)

Can you prove this representation is *unique*?