MATH 220.201 CLASS 12 QUESTIONS

1. Let a_{1}, a_{2}, \ldots be a sequence defined by $a_{1}=2, a_{2}=1$, and

$$
a_{n+1}=a_{n}+6 a_{n-1}
$$

for $n \geq 2$. Prove that, for all $n, a_{n}=3^{n-1}+(-2)^{n-1}$.
2. Let a_{1}, a_{2}, \ldots be a sequence defined by $a_{1}=1, a_{2}=2$, and

$$
a_{n+1}=a_{n}+a_{n-1}+1
$$

for all $n \geq 2$. Conjecture a formula for a_{n} and then prove your formula.
3. For any positive integer, n is called prime if $n \geq 2$ and there exist no integers a such that $1<a<n$ and $a \mid n$. Prime numbers are usually denoted by the letter p.

Prove that any integer $n \geq 2$ is either prime or can be written as a product of (not necessarily distinct) primes.
4. (Binary Representation) Prove that any positive integer n can be written as

$$
n=2^{i_{1}}+2^{i_{2}}+\ldots+2^{i_{k}}
$$

for some integers i_{1}, \ldots, i_{k} with the property that $0 \leq i_{1}<i_{2}<\cdots<i_{k}$. (You may assume the fact that for any positive integer n, there is a unique greatest integer i such that $2^{i} \leq n$.)

Can you prove this representation is unique?

