MATH 220.201 CLASS 11 SOLUTIONS

1. Prove that if $n \geq 2$ is a natural number and $A_{1}, A_{2}, \ldots, A_{n}$ are sets, then

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}}
$$

Proof. We use induction on n.

- Base case: $n=2$. This is just De Morgan's Law for sets.
- Inductive step: $P(n) \Longrightarrow P(n+1)$. Suppose that, for any n sets, the complement of the union is the intersection of their complements. Now suppose we have $n+1$ sets $A_{1}, A_{2}, \ldots, A_{n+1}$. Then

$$
\begin{aligned}
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup A_{n+1}} & =\overline{\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) \cup A_{n+1}} \\
& =\overline{\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)} \cap \overline{A_{n+1}} \\
& =\left(\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}}\right) \cap \overline{A_{n+1}} \\
& =\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}} \cap \overline{A_{n+1}}
\end{aligned}
$$

The second step holds by $P(2)$ and the third step holds by $P(n)$.
2. Prove that for every integer $n \geq 5,2^{n}>n^{2}$.

Proof. We use induction on n.

- Base case: $n=5$. This is the statement that $2^{5}>5^{2}$, i.e. $32>25$.
- Inductive step: $P(n) \Longrightarrow P(n+1)$. Suppose that $2^{n}>n^{2}$. We want to show that $2^{n+1}>(n+1)^{2}$. It is sufficient for us to show that $2^{n+1}-2^{n}>$ $(n+1)^{2}-n^{2}$, i.e. to show that $2^{n}>2 n+1$. This is true because

$$
2^{n}>n^{2}>3 n>2 n+1
$$

The first inequality is by the inductive hypothesis, and the second inequality is because $n>3$, and the third inequality because $n>1$. Therefore, $2^{n+1}>$ $(n+1)^{2}$ and this completes the induction.

Note: In the inductive step, we showed that the left side increases more than the right side. We could have instead proved that $\frac{2^{n+1}}{2^{n}}>\frac{(n+1)^{2}}{n^{2}}$. Simplifying both sides, this becomes $2>\left(1+\frac{1}{n}\right)^{2}$ - this is true for $n=5$, and it therefore is true for all larger n as well.
3. Prove that for every positive odd integer $n, 5 \mid 4^{n}+1$.

Proof. Any odd integer n can be written in the form $n=2 k+1$ for some integer k. If n is positive, then this means $k \geq 0$. So it is equivalent to prove that for every integer $k \geq 0,5 \mid 4^{2 k+1}+1$. We prove this by induction on k.

- Base Case: $k=0.4^{1}+1=5$ so the divisibility clearly holds.
- Inductive step: Suppose that $5 \mid 4^{2 k+1}+1$. We wish to show that $5 \mid 4^{2(k+1)+1}+1$, that is, $5 \mid 4^{2 k+3}+1$. By the inductive hypothesis, $4^{2 k+1} \equiv-1(\bmod 5)$, and therefore

$$
4^{2 k+3}=4^{2 k+1} \cdot 4^{2} \equiv(-1) \cdot 1 \quad(\bmod 5) \equiv-1 \quad(\bmod 5)
$$

and therefore, $5 \mid 4^{2 k+3}+1$, which completes the induction.
4. Prove that every natural number $n \geq 8$ can be written in the form $n=5 a+3 b$ where a, b are nonnegative integers.

Proof 1. Let the described property be denoted by $P(n)$. We will show that $P(8), P(9)$, and $P(10)$ are all true, and then prove that $P(n) \Longrightarrow P(n+3)$ for all $n \geq 8$. This will separately show that $P(8+3 k), P(9+3 k)$, and $P(10+3 k)$ hold for all nonnegative integers k, thereby proving $P(n)$ for all $n \geq 8$.

- Base case: $n=8,9,10.8=5(1)+3(1), 9=5(0)+3(3), 10=5(2)+3(0)$.
- Inductive step: suppose that $n=5 a+3 b$ for some nonnegative integers a, b. Then $n+3=5 a+3(b+1) . b+1$ is also a nonnegative integer, so this implies $P(n+3)$. This completes the induction.

Proof 2. Let $P(n)$ denote the property described above, and let $Q(n)=P(n) \wedge$ $P(n+1) \wedge P(n+2)$. That is, $Q(n)$ is the property that $n, n+1, n+2$ can all be written in the given form. We will prove $\forall n \geq 8, Q(n)$ by induction on n.

- Base case: $n=8.8=5(1)+3(1), 9=5(0)+3(3), 10=5(2)+3(0)$.
- Inductive step: Suppose that $Q(n)$ is true: namely, that $n=5 a+3 b, n+1=$ $5 c+3 d, n+2=5 e+3 f$. We must show that $n+1, n+2$, and $n+3$ have the required property P. By assumption, $n+1=5 c+3 d, n+2=5 e+3 f$, and $n+3=5 a+3(b+1)$. Thus, $Q(n+1)$ is true, which completes the induction.

5. Consider the following statement.

For every integer $k \geq 5$, there exists a natural number N such that for every integer $n \geq N, 2^{n}>n^{k}$.
(a) What is wrong with the following argument disproving the statement?

Proof. Suppose there is such an N. Then for every $k \geq 5$ and every $n \geq N$, we have $2^{n}>n^{k}$. This means $\log _{n}\left(2^{n}\right)>k$. But this doesn't hold when $k \geq \log _{n}\left(2^{n}\right)$. This is a contradiction!

Solution: The statement is saying that N can be chosen dependent on k, whereas the proof is assuming that N is chosen independent of k. The reason N is dependent on k, is that the part quantifying N is inside the sentence quantified by k.

$$
\forall k \geq 5,\left(\exists N \in \mathbb{N},\left(\forall n \geq N,\left(2^{n}>n^{k}\right)\right)\right)
$$

(b) I think there is a better way to name the variables:

For every integer $k \geq 5$, there exists a natural number N_{k} such that for every integer $n \geq N_{k}, 2^{n}>n^{k}$.
Why is this better? This reminds us that the value of N that is chosen is dependent on what k is.
(c) Can you prove the statement? (This is challenging and may require multiple steps! Hint: base case $N_{k}=2^{k}$.)

Proof. For each $k \geq 5$, let $N_{k}=2^{k}$. We prove that, for all $n \geq 2^{k}, 2^{n}>n^{k}$ by induction on n.

- Base case: $n=2^{k}$. We must check that, for each $k \geq 5,2^{\left(2^{k}\right)}>\left(2^{k}\right)^{k}$. But $\left(2^{k}\right)^{k}=2^{\left(k^{2}\right)}$. The inequality $2^{\left(2^{k}\right)}>2^{\left(k^{2}\right)}$ for $k \geq 5$ now follows because we proved in Q2 that $2^{k}>k^{2}$ for $k \geq 5$.
- Inductive step: Suppose that $2^{n}>n^{k}$. We must show that $2^{n+1}>(n+1)^{k}$. It is sufficient to show that $\frac{2^{n+1}}{2^{n}}>\frac{(n+1)^{k}}{n^{k}}$, as then we have that

$$
2^{n+1}=2^{n} \cdot \frac{2^{n+1}}{2^{n}}>2^{n} \cdot \frac{(n+1)^{k}}{n^{k}}=\frac{2^{n}}{n^{k}} \cdot(n+1)^{k}>(n+1)^{k}
$$

So let's show that $\frac{2^{n+1}}{2^{n}}>\frac{(n+1)^{k}}{n^{k}}$. Simplifying both sides, it is equivalent to show that $2>\left(1+\frac{1}{n}\right)^{k}$. Since $n \geq 2^{k}$, it is sufficient to show that $2>\left(1+\frac{1}{2^{k}}\right)^{k}$. When we expand the binomial product on the right hand side, we get 2^{k} terms: one of them is equal to 1 , and every other term is at most $\frac{1}{2^{k}}$. Therefore, the right hand side is at most $1+\frac{2^{k}-1}{2^{k}}=2-\frac{1}{2^{k}}$. Therefore, the inequality $2>\left(1+\frac{1}{2^{k}}\right)^{k}$ holds, and this proves that the induction holds.

