
MATH 220.201 CLASS 11 SOLUTIONS

1. Prove that if n ≥ 2 is a natural number and A1, A2, . . . , An are sets, then

A1 ∪ A2 ∪ · · · ∪ An = A1 ∩ A2 ∩ · · · ∩ An

Proof. We use induction on n.
• Base case: n = 2. This is just De Morgan's Law for sets.
• Inductive step: P (n) =⇒ P (n + 1). Suppose that, for any n sets, the
complement of the union is the intersection of their complements. Now
suppose we have n+ 1 sets A1, A2, . . . , An+1. Then

A1 ∪ A2 ∪ · · · ∪ An ∪ An+1 = (A1 ∪ A2 ∪ · · · ∪ An) ∪ An+1

= (A1 ∪ A2 ∪ · · · ∪ An) ∩ An+1

= (A1 ∩ A2 ∩ · · · ∩ An) ∩ An+1

= A1 ∩ A2 ∩ · · · ∩ An ∩ An+1

The second step holds by P (2) and the third step holds by P (n).
�

2. Prove that for every integer n ≥ 5, 2n > n2.

Proof. We use induction on n.
• Base case: n = 5. This is the statement that 25 > 52, i.e. 32 > 25.
• Inductive step: P (n) =⇒ P (n + 1). Suppose that 2n > n2. We want to
show that 2n+1 > (n + 1)2. It is su�cient for us to show that 2n+1 − 2n >
(n+ 1)2 − n2, i.e. to show that 2n > 2n+ 1. This is true because

2n > n2 > 3n > 2n+ 1

The �rst inequality is by the inductive hypothesis, and the second inequality
is because n > 3, and the third inequality because n > 1. Therefore, 2n+1 >
(n+ 1)2 and this completes the induction.

�

Note: In the inductive step, we showed that the left side increases more than

the right side. We could have instead proved that 2n+1

2n
> (n+1)2

n2 . Simplifying both

sides, this becomes 2 >
(
1 + 1

n

)2
- this is true for n = 5, and it therefore is true

for all larger n as well.

3. Prove that for every positive odd integer n, 5|4n + 1.
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Proof. Any odd integer n can be written in the form n = 2k+1 for some integer
k. If n is positive, then this means k ≥ 0. So it is equivalent to prove that for
every integer k ≥ 0, 5|42k+1 + 1. We prove this by induction on k.
• Base Case: k = 0. 41 + 1 = 5 so the divisibility clearly holds.
• Inductive step: Suppose that 5|42k+1+1. We wish to show that 5|42(k+1)+1+1,
that is, 5|42k+3 + 1. By the inductive hypothesis, 42k+1 ≡ −1 (mod 5), and
therefore

42k+3 = 42k+1 · 42 ≡ (−1) · 1 (mod 5) ≡ −1 (mod 5)

and therefore, 5|42k+3 + 1, which completes the induction.
�

4. Prove that every natural number n ≥ 8 can be written in the form n = 5a + 3b
where a, b are nonnegative integers.

Proof 1. Let the described property be denoted by P (n). We will show that
P (8), P (9), and P (10) are all true, and then prove that P (n) =⇒ P (n + 3) for
all n ≥ 8. This will separately show that P (8 + 3k), P (9 + 3k), and P (10 + 3k)
hold for all nonnegative integers k, thereby proving P (n) for all n ≥ 8.
• Base case: n = 8, 9, 10. 8 = 5(1) + 3(1), 9 = 5(0) + 3(3), 10 = 5(2) + 3(0).
• Inductive step: suppose that n = 5a+ 3b for some nonnegative integers a, b.
Then n+3 = 5a+3(b+1). b+1 is also a nonnegative integer, so this implies
P (n+ 3). This completes the induction.

�

Proof 2. Let P (n) denote the property described above, and let Q(n) = P (n) ∧
P (n+ 1)∧P (n+ 2). That is, Q(n) is the property that n, n+ 1, n+ 2 can all be
written in the given form. We will prove ∀n ≥ 8, Q(n) by induction on n.
• Base case: n = 8. 8 = 5(1) + 3(1), 9 = 5(0) + 3(3), 10 = 5(2) + 3(0).
• Inductive step: Suppose that Q(n) is true: namely, that n = 5a+3b, n+1 =
5c+3d, n+2 = 5e+3f . We must show that n+1, n+2, and n+3 have the
required property P . By assumption, n+ 1 = 5c+ 3d, n+ 2 = 5e+ 3f , and
n+3 = 5a+3(b+1). Thus, Q(n+1) is true, which completes the induction.

�

5. Consider the following statement.

For every integer k ≥ 5, there exists a natural number N such that for every
integer n ≥ N , 2n > nk.

(a) What is wrong with the following argument disproving the statement?

Proof. Suppose there is such an N . Then for every k ≥ 5 and every n ≥ N ,
we have 2n > nk. This means logn(2

n) > k. But this doesn't hold when
k ≥ logn(2

n). This is a contradiction! �
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Solution: The statement is saying that N can be chosen dependent on k,
whereas the proof is assuming that N is chosen independent of k. The reason
N is dependent on k, is that the part quantifying N is inside the sentence
quanti�ed by k.

∀k ≥ 5, (∃N ∈ N, (∀n ≥ N, (2n > nk)))

(b) I think there is a better way to name the variables:
For every integer k ≥ 5, there exists a natural number Nk such that for

every integer n ≥ Nk, 2
n > nk.

Why is this better? This reminds us that the value of N that is chosen

is dependent on what k is.

(c) Can you prove the statement? (This is challenging and may require multiple
steps! Hint: base case Nk = 2k.)

Proof. For each k ≥ 5, let Nk = 2k. We prove that, for all n ≥ 2k, 2n > nk by
induction on n.
• Base case: n = 2k. We must check that, for each k ≥ 5, 2(2

k) > (2k)k. But

(2k)k = 2(k
2). The inequality 2(2

k) > 2(k
2) for k ≥ 5 now follows because we

proved in Q2 that 2k > k2 for k ≥ 5.
• Inductive step: Suppose that 2n > nk. We must show that 2n+1 > (n+ 1)k.

It is su�cient to show that 2n+1

2n
> (n+1)k

nk , as then we have that

2n+1 = 2n · 2
n+1

2n
> 2n · (n+ 1)k

nk
=

2n

nk
· (n+ 1)k > (n+ 1)k

So let's show that 2n+1

2n
> (n+1)k

nk . Simplifying both sides, it is equivalent

to show that 2 >
(
1 + 1

n

)k
. Since n ≥ 2k, it is su�cient to show that

2 >
(
1 + 1

2k

)k
. When we expand the binomial product on the right hand side,

we get 2k terms: one of them is equal to 1, and every other term is at most
1
2k
. Therefore, the right hand side is at most 1 + 2k−1

2k
= 2 − 1

2k
. Therefore,

the inequality 2 >
(
1 + 1

2k

)k
holds, and this proves that the induction holds.

�


