MATH 220.201 CLASS 10 QUESTIONS

Use induction to prove the following results.

1. For all $n \in \mathbb{N}, 1+2+3+\ldots+n=\frac{n(n+1)}{2}$.

Note: as this is the first induction proof, I will make it extra-explicit.

Proof. Let $P(n)$ be the sentence $\left(1+2+\ldots+n=\frac{n(n+1)}{2}\right)$. We wish to prove $\forall n \in \mathbb{N}, P(n)$. We prove this by induction on n.

- Base Case: $P(1)$. This is equivalent to showing that $1=\frac{1 \cdot 2}{2}$. This is clear.
- Inductive Step: $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$. We must prove that for any n, if $P(n)$ is true, then $P(n+1)$ is true. Suppose that $P(n)$ is true, i.e. $\left.1+2+\ldots+n=\frac{n(n+1)}{2}\right]^{1}$ Then

$$
\begin{aligned}
1+2+\ldots+n+(n+1) & =1+2+\ldots+n+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \quad \text { by the inductive hypothesis } \\
& =\frac{n(n+1)}{2}+\frac{2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Therefore, we have proven $P(n+1)$. This completes the induction, and therefore completes the proof.
2. For all $n \in \mathbb{N}, 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Proof. We prove it by induction on n. Let $P(n)$ be the sentence $\left(1^{2}+2^{2}+\ldots+n^{2}=\right.$ $\left.\frac{n(n+1)(2 n+1)}{6}\right)$.

- Base Case: $P(1)$. We must check that $1^{2}=\frac{1 \cdot 2 \cdot 3}{6}$. This is clear.

[^0]- Inductive Step: $P(n) \Longrightarrow P(n+1)$. Suppose that $1^{2}+2^{2}+\ldots+n^{2}=$ $\frac{n(n+1)(2 n+1)}{6}$ is true. Then

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \quad \text { (byinductivehypothesis) } \\
& =\frac{(n+1)\left(2 n^{2}+n\right)}{6}+\frac{(n+1)(6 n+6)}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
\end{aligned}
$$

which proves $P(n+1)$. This completes the induction.
3. Let $x>-1$ be a real number. Then for all $n \in \mathbb{N},(1+x)^{n} \geq 1+n x$.

Proof. We use a proof by induction on $n .^{2}$ Let $P(n)$ be the sentence

$$
P(n):=\forall x>-1,\left((1+x)^{n} \geq 1+n x\right)
$$

- Base Case: $P(1)$ is the statement that, for all $x,(1+x)^{1} \geq 1+1 \cdot x$. The two sides are equal, so the weak inequality \geq holds.
- Inductive Step: Suppose that $\forall x>-1,\left((1+x)^{n} \geq 1+n x\right)$.

We wish to prove that $\forall x>-1,\left((1+x)^{n+1} \geq 1+(n+1) x\right)$. Let x be an arbitrary real number greater than -1 . Then

$$
\begin{array}{rlr}
(1+x)^{n+1} & =(1+x)^{n}(1+x) \\
& \geq(1+n x)(1+x) \quad \text { (by inductive hypothesis and because } 1+x>0) \\
& =1+n x+x+n x^{2} \\
& =1+(n+1) x+n x^{2} & \\
& \geq 1+(n+1) x \quad \quad \text { because } n x^{2} \geq 0
\end{array}
$$

We have thus proven $P(n+1)$ and this completes the induction.
4. Let A be a finite set of size n. Then $|\mathcal{P}(A)|=2^{n}$.

Proof. Let $P(n)$ be the sentence

$$
P(n):=\text { For any set } A \text { of size } n,|\mathcal{P}(A)|=2^{n}
$$

[^1]We prove $\forall n \in \mathbb{N}, P(n)$ by induction on n.

- Base Case: Suppose that A is a set of size 1. Then it has a single element, x. Then A has two subsets: \emptyset and $\{x\}$. So $|\mathcal{P}(A)|=2=2^{1}$, which proves $P(1)$.
- Inductive step: Assume $P(n)$ is true. Now suppose that A is an arbitrary set of size $n+1$. Call its elements $x_{1}, x_{2}, \ldots, x_{n+1}$. For any subset $S \subseteq A$, exactly one of $x_{n+1} \notin S$ or $x_{n+1} \in S$ holds true.
(a) In the first case, $S \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. By the inductive hypothesis, there are exactly 2^{n} such subsets S.
(b) In the second case, $S-\left\{x_{n+1}\right\} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. By the inductive hypothesis, there are exactly 2^{n} such subsets $S-\left\{x_{n+1}\right\}$.
Since the two cases considered are mutually exclusive, the total number of subsets $S \subseteq A$ is $2^{n}+2^{n}=2^{n+1}$. Thus $|\mathcal{P}(A)|=2^{n+1}$, which completes the induction.
(1) For all $n \in \mathbb{N}, \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}$. Then use this to prove that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots=1
$$

Proof. Let $P(n)$ be the sentence $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}$. We prove this by induction on n.

- Base Case: For $n=1$, the sentence is $\frac{1}{1 \cdot 2}=\frac{1}{1+1}$. This is obvious.
- Inductive Step: Suppose that $P(n)$ holds true. Then

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)} & =\frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n(n+2)+1}{(n+1)(n+2)} \\
& =\frac{n^{2}+2 n+1}{(n+1)(n+2)} \\
& =\frac{(n+1)^{2}}{(n+1)(n+2)} \\
& =\frac{n+1}{n+2}
\end{aligned}
$$

We have proven $P(n+1)$, and so this completes the induction. Now we have proven that $P(n)$ holds true for all n. The infinite sum $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots$ can be written as $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$. And therefore

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

6. For all $n \in \mathbb{N}, \frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3}$ is an integer. Then show that for all $n \in \mathbb{N}, \frac{n(n+1)(n+2)(n+3)}{1 \cdot 2 \cdot 3 \cdot 4}$ is an integer.

Note: The numbers $\frac{n(n+1)}{2}$ are called triangular numbers because that number of dots can be arranged into a triangle. The numbers $\frac{n(n+1)(n+2)}{6}$ are called tetrahedral numbers for a similar reason.

Proof of first assertion. We prove it by induction on n.

- Base Case: $n=1$. This is equivalent to showing that $\frac{1 \cdot 2 \cdot 3}{1 \cdot 2 \cdot 3}$ is an integer. This is obvious.
- Inductive Step: Suppose that $\frac{n(n+1)(n+2)}{6}$ is an integer. We wish to show that $\frac{(n+1)(n+2)(n+3)}{6}$ is an integer. But

$$
\begin{gathered}
\frac{(n+1)(n+2)(n+3)}{6}=\frac{n(n+1)(n+2)}{6}+\frac{3(n+1)(n+2)}{6}=\frac{n(n+1)(n+2)}{6}+\frac{(n+1)(n+2)}{2} \\
\quad \text { and because of Question 1, } \frac{(n+1)(n+2)}{2} \text { is an integer. Therefore, } \frac{(n+1)(n+2)(n+3)}{6} \\
\text { is an integer, which completes the induction. }
\end{gathered}
$$

Proof of section assertion. Again we prove it by induction on n.

- Base Case: $n=1$. This is equivalent to showing that $\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4}$ is an integer. This is obvious.
- Inductive Step: Suppose that $\frac{n(n+1)(n+2)(n+3)}{24}$ is an integer. We wish to show that $\frac{(n+1)(n+2)(n+3)(n+4)}{4}$ is an integer. But

$$
\begin{aligned}
\frac{(n+1)(n+2)(n+3)(n+4)}{24} & =\frac{n(n+1)(n+2)(n+3)}{24}+\frac{4(n+1)(n+2)(n+3)}{24} \\
& =\frac{n(n+1)(n+2)(n+3)}{24}+\frac{(n+1)(n+2)(n+3)}{6}
\end{aligned}
$$

and because of the previous assertion, $\frac{(n+1)(n+2)(n+3)}{6}$ is an integer. Therefore, $\frac{(n+1)(n+2)(n+3)(n+4)}{24}$ is an integer, which completes the induction.

Challenge: Can you form a more general statement and prove it by induction?
7. For all $n \in \mathbb{N}, 3 \mid 2^{n}+1 \Longleftrightarrow 3 \nmid 2^{n}-1$.

Proof. Let

$$
\begin{aligned}
& Q(n):=\left(3 \mid 2^{n}+1\right) \wedge\left(3 \nmid 2^{n}-1\right) \\
& R(n):=\left(3 \nmid 2^{n}+1\right) \wedge\left(3 \mid 2^{n}-1\right)
\end{aligned}
$$

We wish to show $\forall n \in \mathbb{N},(Q(n) \vee R(n))$. We prove this by induction on n.

- Base Case: When $n=1,2^{n}+1=0$ and $2^{n}-1=2$. Therefore, $R(1)$ is true and $Q(n)$ is false. Thus, $Q(1) \vee R(1)$ is true.
- Inductive Step: We wish to prove $(Q(n) \vee R(n)) \Longrightarrow(Q(n+1) \vee R(n+1))$. This is logically equivalent to showing $Q(n) \Longrightarrow(Q(n+1) \vee R(n+1))$ and $R(n) \Longrightarrow(Q(n+1) \vee R(n+1))$. We will show that $Q(n) \Longrightarrow R(n+1)$ and $R(n) \Longrightarrow Q(n+1)$, which is sufficient.
(a) Suppose $Q(n)$. Then $3 \mid 2^{n}+1$, so $2^{n} \equiv-1(\bmod 3)$. Then $2^{n+1} \equiv-2 \equiv 1 \quad(\bmod 3)$
and so $3 \mid 2^{n}-1$ and $3 \nmid 2^{n}+1$. We therefore have $R(n+1)$.
(b) Suppose $R(n)$. Then $3 \mid 2^{n}-1$, so $2^{n} \equiv 1(\bmod 3)$. Then

$$
2^{n+1} \equiv 2 \equiv-1 \quad(\bmod 3)
$$

and so $3 \mid 2^{n}+1$ and $3 \nmid 2^{n}-1$. We therefore have $Q(n+1)$.

Note: Here's a diagram of the logical flow of the last proof.

[^0]: ${ }^{1}$ This is called the inductive hypothesis.

[^1]: ${ }^{2}$ You cannot induct on x, because x is taken to be a real number! So you have to keep x arbitrary throughout this proof - no substituting of $x+1$ for x or anything like that. Make sure you know what your statement $P(n)$ is before you start the induction.

