
MATH 220.201 CLASS 10 QUESTIONS

Use induction to prove the following results.

1. For all n ∈ N, 1 + 2 + 3 + . . .+ n = n(n+1)
2

.

Note: as this is the �rst induction proof, I will make it extra-explicit.

Proof. Let P (n) be the sentence (1 + 2 + . . . + n = n(n+1)
2

). We wish to prove
∀n ∈ N, P (n). We prove this by induction on n.
• Base Case: P (1). This is equivalent to showing that 1 = 1·2

2
. This is clear.

• Inductive Step: ∀n ∈ N, P (n) =⇒ P (n + 1). We must prove that for
any n, if P (n) is true, then P (n+ 1) is true. Suppose that P (n) is true, i.e.

1 + 2 + . . .+ n = n(n+1)
2

.1 Then

1 + 2 + . . .+ n+ (n+ 1) = 1 + 2 + . . .+ n+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) by the inductive hypothesis

=
n(n+ 1)

2
+

2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

Therefore, we have proven P (n + 1). This completes the induction, and
therefore completes the proof.

�

2. For all n ∈ N, 12 + 22 + 32 + . . .+ n2 = n(n+1)(2n+1)
6

.

Proof. We prove it by induction on n. Let P (n) be the sentence (12+22+. . .+n2 =
n(n+1)(2n+1)

6
).

• Base Case: P (1). We must check that 12 = 1·2·3
6
. This is clear.

1This is called the inductive hypothesis.

1
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• Inductive Step: P (n) =⇒ P (n + 1). Suppose that 12 + 22 + . . . + n2 =
n(n+1)(2n+1)

6
is true. Then

12 + 22 + . . .+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 (byinductivehypothesis)

=
(n+ 1)(2n2 + n)

6
+

(n+ 1)(6n+ 6)

6

=
(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6

which proves P (n+ 1). This completes the induction.
�

3. Let x > −1 be a real number. Then for all n ∈ N, (1 + x)n ≥ 1 + nx.

Proof. We use a proof by induction on n.2 Let P (n) be the sentence

P (n) := ∀x > −1, ((1 + x)n ≥ 1 + nx)

• Base Case: P (1) is the statement that, for all x, (1 + x)1 ≥ 1 + 1 · x. The
two sides are equal, so the weak inequality ≥ holds.
• Inductive Step: Suppose that ∀x > −1, ((1 + x)n ≥ 1 + nx).
We wish to prove that ∀x > −1, ((1 + x)n+1 ≥ 1 + (n + 1)x). Let x be an
arbitrary real number greater than −1. Then

(1 + x)n+1 = (1 + x)n(1 + x)

≥ (1 + nx)(1 + x) (by inductive hypothesis and because 1 + x > 0)

= 1 + nx+ x+ nx2

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x because nx2 ≥ 0

We have thus proven P (n+ 1) and this completes the induction.
�

4. Let A be a �nite set of size n. Then |P(A)| = 2n.

Proof. Let P (n) be the sentence

P (n) := For any set A of size n, |P(A)| = 2n

2You cannot induct on x, because x is taken to be a real number! So you have to keep x arbitrary

throughout this proof - no substituting of x+ 1 for x or anything like that. Make sure you know what

your statement P (n) is before you start the induction.
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We prove ∀n ∈ N, P (n) by induction on n.
• Base Case: Suppose that A is a set of size 1. Then it has a single element,
x. Then A has two subsets: ∅ and {x}. So |P(A)| = 2 = 21, which proves
P (1).
• Inductive step: Assume P (n) is true. Now suppose that A is an arbitrary
set of size n + 1. Call its elements x1, x2, . . . , xn+1. For any subset S ⊆ A,
exactly one of xn+1 /∈ S or xn+1 ∈ S holds true.
(a) In the �rst case, S ⊆ {x1, . . . , xn}. By the inductive hypothesis, there

are exactly 2n such subsets S.
(b) In the second case, S − {xn+1} ⊆ {x1, . . . , xn}. By the inductive

hypothesis, there are exactly 2n such subsets S − {xn+1}.
Since the two cases considered are mutually exclusive, the total number of
subsets S ⊆ A is 2n + 2n = 2n+1. Thus |P(A)| = 2n+1, which completes the
induction.

�

(1) For all n ∈ N, 1
1·2 +

1
2·3 +

1
3·4 + . . .+ 1

n·(n+1)
= n

n+1
. Then use this to prove that

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ . . . = 1

Proof. Let P (n) be the sentence 1
1·2 +

1
2·3 + . . .+ 1

n·(n+1)
= n

n+1
. We prove this by

induction on n.
• Base Case: For n = 1, the sentence is 1

1·2 = 1
1+1

. This is obvious.
• Inductive Step: Suppose that P (n) holds true. Then

1

1 · 2
+

1

2 · 3
+ . . .+

1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)

=
n(n+ 2) + 1

(n+ 1)(n+ 2)

=
n2 + 2n+ 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)

=
n+ 1

n+ 2

We have proven P (n+ 1), and so this completes the induction.
Now we have proven that P (n) holds true for all n. The in�nite sum 1

1·2+
1
2·3+ . . .

can be written as
∞∑
k=1

1
k(k+1)

. And therefore

∞∑
k=1

1

k(k + 1)
= lim

n→∞

n∑
k=1

1

k(k + 1)
= lim

n→∞

n

n+ 1
= 1
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�

6. For all n ∈ N, n(n+1)(n+2)
1·2·3 is an integer. Then show that for all n ∈ N, n(n+1)(n+2)(n+3)

1·2·3·4
is an integer.

Note: The numbers n(n+1)
2

are called triangular numbers because that num-

ber of dots can be arranged into a triangle. The numbers n(n+1)(n+2)
6

are called
tetrahedral numbers for a similar reason.

Proof of �rst assertion. We prove it by induction on n.
• Base Case: n = 1. This is equivalent to showing that 1·2·3

1·2·3 is an integer.
This is obvious.
• Inductive Step: Suppose that n(n+1)(n+2)

6
is an integer. We wish to show

that (n+1)(n+2)(n+3)
6

is an integer. But

(n+ 1)(n+ 2)(n+ 3)

6
=

n(n+ 1)(n+ 2)

6
+
3(n+ 1)(n+ 2)

6
=

n(n+ 1)(n+ 2)

6
+
(n+ 1)(n+ 2)

2

and because of Question 1, (n+1)(n+2)
2

is an integer. Therefore, (n+1)(n+2)(n+3)
6

is an integer, which completes the induction.
�

Proof of section assertion. Again we prove it by induction on n.
• Base Case: n = 1. This is equivalent to showing that 1·2·3·4

1·2·3·4 is an integer.
This is obvious.
• Inductive Step: Suppose that n(n+1)(n+2)(n+3)

24
is an integer. We wish to

show that (n+1)(n+2)(n+3)(n+4)
4

is an integer. But

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

24
=

n(n+ 1)(n+ 2)(n+ 3)

24
+

4(n+ 1)(n+ 2)(n+ 3)

24

=
n(n+ 1)(n+ 2)(n+ 3)

24
+

(n+ 1)(n+ 2)(n+ 3)

6

and because of the previous assertion, (n+1)(n+2)(n+3)
6

is an integer. Therefore,
(n+1)(n+2)(n+3)(n+4)

24
is an integer, which completes the induction.

�

Challenge: Can you form a more general statement and prove it by induction?

7. For all n ∈ N, 3 | 2n + 1 ⇐⇒ 3 - 2n − 1.

Proof. Let
Q(n) := (3 | 2n + 1) ∧ (3 - 2n − 1)

R(n) := (3 - 2n + 1) ∧ (3 | 2n − 1)

We wish to show ∀n ∈ N, (Q(n) ∨R(n)). We prove this by induction on n.
• Base Case: When n = 1, 2n + 1 = 0 and 2n − 1 = 2. Therefore, R(1) is
true and Q(n) is false. Thus, Q(1) ∨R(1) is true.
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• Inductive Step: We wish to prove (Q(n)∨R(n)) =⇒ (Q(n+1)∨R(n+1)).
This is logically equivalent to showing Q(n) =⇒ (Q(n+1)∨R(n+1)) and
R(n) =⇒ (Q(n + 1) ∨ R(n + 1)). We will show that Q(n) =⇒ R(n + 1)
and R(n) =⇒ Q(n+ 1), which is su�cient.
(a) Suppose Q(n). Then 3 | 2n + 1, so 2n ≡ −1 (mod 3). Then

2n+1 ≡ −2 ≡ 1 (mod 3)

and so 3 | 2n − 1 and 3 - 2n + 1. We therefore have R(n+ 1).
(b) Suppose R(n). Then 3 | 2n − 1, so 2n ≡ 1 (mod 3). Then

2n+1 ≡ 2 ≡ −1 (mod 3)

and so 3 | 2n + 1 and 3 - 2n − 1. We therefore have Q(n+ 1).
�

Note: Here's a diagram of the logical �ow of the last proof.
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##

Q(2)

##
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· · ·
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