## MATH 220.201 CLASS 10 QUESTIONS

Use induction to prove the following results.

1. For all  $n \in \mathbb{N}$ ,  $1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$ .

Note: as this is the first induction proof, I will make it extra-explicit.

*Proof.* Let P(n) be the sentence  $(1 + 2 + \ldots + n = \frac{n(n+1)}{2})$ . We wish to prove  $\forall n \in \mathbb{N}, P(n)$ . We prove this by induction on n.

- Base Case: P(1). This is equivalent to showing that 1 = <sup>1·2</sup>/<sub>2</sub>. This is clear.
  Inductive Step: ∀n ∈ N, P(n) ⇒ P(n + 1). We must prove that for any n, if P(n) is true, then P(n+1) is true. Suppose that P(n) is true, i.e.  $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ .<sup>1</sup> Then

$$1 + 2 + \dots + n + (n + 1) = 1 + 2 + \dots + n + (n + 1)$$
  
=  $\frac{n(n + 1)}{2} + (n + 1)$  by the inductive hypothesis  
=  $\frac{n(n + 1)}{2} + \frac{2(n + 1)}{2}$   
=  $\frac{(n + 1)(n + 2)}{2}$ 

Therefore, we have proven P(n+1). This completes the induction, and therefore completes the proof.

2. For all  $n \in \mathbb{N}$ ,  $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$ .

*Proof.* We prove it by induction on n. Let P(n) be the sentence  $(1^2+2^2+\ldots+n^2)$  $\frac{n(n+1)(2n+1)}{6}\Big).$ 

• Base Case: P(1). We must check that  $1^2 = \frac{1 \cdot 2 \cdot 3}{6}$ . This is clear.

<sup>&</sup>lt;sup>1</sup>This is called the *inductive hypothesis*.

• Inductive Step:  $P(n) \implies P(n+1)$ . Suppose that  $1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$  is true. Then

$$1^{2} + 2^{2} + \ldots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} \qquad (by inductive hypothesis)$$
$$= \frac{(n+1)(2n^{2}+n)}{6} + \frac{(n+1)(6n+6)}{6}$$
$$= \frac{(n+1)(2n^{2}+7n+6)}{6}$$
$$= \frac{(n+1)(n+2)(2n+3)}{6}$$
$$= \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$$

which proves P(n+1). This completes the induction.

- 3. Let x > -1 be a real number. Then for all  $n \in \mathbb{N}, (1+x)^n \ge 1 + nx$ .

*Proof.* We use a proof by induction on  $n^2$ . Let P(n) be the sentence

$$P(n) := \forall x > -1, ((1+x)^n \ge 1+nx)$$

- **Base Case:** P(1) is the statement that, for all x,  $(1 + x)^1 \ge 1 + 1 \cdot x$ . The two sides are equal, so the weak inequality  $\ge$  holds.
- Inductive Step: Suppose that  $\forall x > -1$ ,  $((1 + x)^n \ge 1 + nx)$ . We wish to prove that  $\forall x > -1$ ,  $((1 + x)^{n+1} \ge 1 + (n+1)x)$ . Let x be an arbitrary real number greater than -1. Then

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

 $\geq (1+nx)(1+x)$  (by inductive hypothesis and because 1+x > 0) =  $1 + nx + x + nx^2$ =  $1 + (n+1)x + nx^2$  $\geq 1 + (n+1)x$  because  $nx^2 \ge 0$ 

We have thus proven P(n+1) and this completes the induction.

4. Let A be a finite set of size n. Then  $|\mathcal{P}(A)| = 2^n$ .

*Proof.* Let P(n) be the sentence

$$P(n) :=$$
 For any set A of size  $n, |\mathcal{P}(A)| = 2^n$ 

<sup>&</sup>lt;sup>2</sup>You cannot induct on x, because x is taken to be a *real* number! So you have to keep x arbitrary throughout this proof - no substituting of x + 1 for x or anything like that. Make sure you know what your statement P(n) is before you start the induction.

We prove  $\forall n \in \mathbb{N}, P(n)$  by induction on n.

- **Base Case:** Suppose that A is a set of size 1. Then it has a single element, x. Then A has two subsets:  $\emptyset$  and  $\{x\}$ . So  $|\mathcal{P}(A)| = 2 = 2^1$ , which proves P(1).
- Inductive step: Assume P(n) is true. Now suppose that A is an arbitrary set of size n + 1. Call its elements  $x_1, x_2, \ldots, x_{n+1}$ . For any subset  $S \subseteq A$ , exactly one of  $x_{n+1} \notin S$  or  $x_{n+1} \in S$  holds true.
  - (a) In the first case,  $S \subseteq \{x_1, \ldots, x_n\}$ . By the inductive hypothesis, there are exactly  $2^n$  such subsets S.
  - (b) In the second case,  $S \{x_{n+1}\} \subseteq \{x_1, \ldots, x_n\}$ . By the inductive hypothesis, there are exactly  $2^n$  such subsets  $S \{x_{n+1}\}$ .

Since the two cases considered are mutually exclusive, the total number of subsets  $S \subseteq A$  is  $2^n + 2^n = 2^{n+1}$ . Thus  $|\mathcal{P}(A)| = 2^{n+1}$ , which completes the induction.

(1) For all  $n \in \mathbb{N}$ ,  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$ . Then use this to prove that  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots = 1$ 

*Proof.* Let P(n) be the sentence  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$ . We prove this by induction on n.

- **Base Case:** For n = 1, the sentence is  $\frac{1}{1\cdot 2} = \frac{1}{1+1}$ . This is obvious.
- Inductive Step: Suppose that P(n) holds true. Then

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n(n+2)+1}{(n+1)(n+2)}$$
$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$
$$= \frac{(n+1)^2}{(n+1)(n+2)}$$
$$= \frac{n+1}{n+2}$$

We have proven P(n + 1), and so this completes the induction. Now we have proven that P(n) holds true for all n. The infinite sum  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots$  can be written as  $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ . And therefore

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)} = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

6. For all  $n \in \mathbb{N}$ ,  $\frac{n(n+1)(n+2)}{1\cdot 2\cdot 3}$  is an integer. Then show that for all  $n \in \mathbb{N}$ ,  $\frac{n(n+1)(n+2)(n+3)}{1\cdot 2\cdot 3\cdot 4}$  is an integer.

**Note:** The numbers  $\frac{n(n+1)}{2}$  are called *triangular numbers* because that number of dots can be arranged into a triangle. The numbers  $\frac{n(n+1)(n+2)}{6}$  are called *tetrahedral numbers* for a similar reason.

*Proof of first assertion.* We prove it by induction on n.

- Base Case: n = 1. This is equivalent to showing that  $\frac{1\cdot 2\cdot 3}{1\cdot 2\cdot 3}$  is an integer. This is obvious.
- Inductive Step: Suppose that  $\frac{n(n+1)(n+2)}{6}$  is an integer. We wish to show that  $\frac{(n+1)(n+2)(n+3)}{6}$  is an integer. But

$$\frac{(n+1)(n+2)(n+3)}{6} = \frac{n(n+1)(n+2)}{6} + \frac{3(n+1)(n+2)}{6} = \frac{n(n+1)(n+2)}{6} + \frac{(n+1)(n+2)}{2}$$

and because of Question 1,  $\frac{(n+1)(n+2)}{2}$  is an integer. Therefore,  $\frac{(n+1)(n+2)(n+3)}{6}$  is an integer, which completes the induction.

Proof of section assertion. Again we prove it by induction on n.

- Base Case: n = 1. This is equivalent to showing that  $\frac{1\cdot 2\cdot 3\cdot 4}{1\cdot 2\cdot 3\cdot 4}$  is an integer. This is obvious.
- Inductive Step: Suppose that  $\frac{n(n+1)(n+2)(n+3)}{24}$  is an integer. We wish to show that  $\frac{(n+1)(n+2)(n+3)(n+4)}{4}$  is an integer. But

$$\frac{(n+1)(n+2)(n+3)(n+4)}{24} = \frac{n(n+1)(n+2)(n+3)}{24} + \frac{4(n+1)(n+2)(n+3)}{24}$$
$$= \frac{n(n+1)(n+2)(n+3)}{24} + \frac{(n+1)(n+2)(n+3)}{6}$$

and because of the previous assertion,  $\frac{(n+1)(n+2)(n+3)}{6}$  is an integer. Therefore,  $\frac{(n+1)(n+2)(n+3)(n+4)}{24}$  is an integer, which completes the induction.

 $\square$ 

Challenge: Can you form a more general statement and prove it by induction?

7. For all  $n \in \mathbb{N}$ ,  $3 \mid 2^n + 1 \iff 3 \nmid 2^n - 1$ .

Proof. Let

$$Q(n) := (3 \mid 2^n + 1) \land (3 \nmid 2^n - 1)$$
  
$$R(n) := (3 \nmid 2^n + 1) \land (3 \mid 2^n - 1)$$

We wish to show  $\forall n \in \mathbb{N}, (Q(n) \lor R(n))$ . We prove this by induction on n.

• Base Case: When n = 1,  $2^n + 1 = 0$  and  $2^n - 1 = 2$ . Therefore, R(1) is true and Q(n) is false. Thus,  $Q(1) \vee R(1)$  is true.

• Inductive Step: We wish to prove  $(Q(n) \lor R(n)) \implies (Q(n+1) \lor R(n+1)).$ This is logically equivalent to showing  $Q(n) \implies (Q(n+1) \lor R(n+1))$  and  $R(n) \implies (Q(n+1) \lor R(n+1))$ . We will show that  $Q(n) \implies R(n+1)$ and  $R(n) \implies Q(n+1)$ , which is sufficient.

(a) Suppose Q(n). Then  $3 \mid 2^n + 1$ , so  $2^n \equiv -1 \pmod{3}$ . Then  $2^{n+1} \equiv -2 \equiv 1 \pmod{3}$ 

and so 
$$3 \mid 2^n - 1$$
 and  $3 \nmid 2^n + 1$ . We therefore have  $R(n+1)$   
(b) Suppose  $R(n)$ . Then  $3 \mid 2^n - 1$ , so  $2^n \equiv 1 \pmod{3}$ . Then  
 $2^{n+1} \equiv 2 \equiv -1 \pmod{3}$ 

and so  $3 \mid 2^n + 1$  and  $3 \nmid 2^n - 1$ . We therefore have Q(n+1).

Note: Here's a diagram of the logical flow of the last proof.

