MATH 220 CLASS 1: A SIMPLE PROOF

This document is meant to serve two purposes. First, it includes the short proof I presented in class today (January 4). Second, it serves as a template file for you to learn some basic LaTeX typesetting. I have tried to include a variety of LaTeX commands.

1. A theorem about divisibility

Here's a stronger statement than the one I proved in class.
Proposition 1.1. Let n be an odd integer. Then $n^{2}-1$ is a multiple of 8 .

Note: A priori, it is not even clear why $n^{2}-1$ should be divisible by 4 . So the above fact is quite surprising!

Proof. The set of odd integers can be described as

$$
\{\text { Odd integers }\}=\{2 k+1 \mid k \in \mathbb{Z}\}
$$

Therefore, there is some integer k such that $n=2 k+1$. So one can write $n^{2}-1$ as

$$
\begin{align*}
n^{2}-1 & =(2 k+1)^{2}-1 \\
& =4 k^{2}+4 k+1-1 \tag{1.1}\\
& =4 k(k+1)
\end{align*}
$$

Because k and $k+1$ are consecutive integers, one of them is even, and therefore is divisible by 2 . Therefore, $4 k(k+1)$ is divisible by 8 , as desired.

Here is an alternate proof. I have written the proof more concisely, and moved the very rigorous step to a footnote.

Proof. $n^{2}-1$ can be factored as

$$
n^{2}-1=(n-1)(n+1)
$$

Since n is odd, $(n-1)$ and $(n+1)$ must each be even. Moreover, since they are consecutive even numbers, one of them is a multiple of 4.1 Therefore, $(n-1)(n+1)$ is a multiple of $2 \cdot 4=8$.

[^0]$$
\text { 2. Is } \sqrt{2} \in \mathbb{Q} \text { ? }
$$

One of the other mysterious questions I posed in class today was the following.
Question 2.0.1. Can $\sqrt{2}$ be expressed in the form $\frac{a}{b}$, where $a, b \in \mathbb{Z}$? That is, is $\sqrt{2}$ rational?

The answer, as it turns out, is no. Apparently this was a big deal to some Greek mathematicians, who had the implicit assumption that all the numbers and quantities they normally would encounter would be rational numbers. But $\sqrt{2}$ appears as the hypotenuse of a right triangle with both legs of length 1 . The proof is below, but the reasoning is a bit more advanced. Proceed at your own peril!
Proof. We will argue by contradiction. That is, we will assume that $\sqrt{2}$ can be written in the form $\frac{a}{b}$ for some integers a and b, and then show that we can reach an impossible conclusion, thereby invalidating this initial assumption.

Suppose, for a contradiction, that $\sqrt{2}=\frac{a}{b}$ for some integers a and b. Without loss of generality, we may assume that this fraction is reduced - that a and b have no common factors. This is true because any fraction can be written in reduced form. Then,

$$
\begin{aligned}
\sqrt{2}=\frac{a}{b} & \Longrightarrow 2=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}} \\
& \Longrightarrow 2 b^{2}=a^{2}
\end{aligned}
$$

The left side of this equation is even, and therefore, a is even. Write $a=2 x$ for some integer x.

$$
\begin{gathered}
2 b^{2}=\left(2 x^{2}\right)=4 x^{2} \\
b^{2}=2 x^{2}
\end{gathered}
$$

The right side of this equation is even, and therefore, b is even. This means that a and b share a common factor of 2 . But we assumed that a and b have no common factors! So we have reached a contradiction.

Therefore, our assumption that such a fraction $\frac{a}{b}$ existed, was incorrect. Therefore, $\sqrt{2}$ is irrational.

[^0]: ${ }^{1}$ This can be seen by letting $n-1=2 k$ and $n+1=2 k+2$. Then if k is even, $n-1$ is a multiple of 4 , while if k is odd, $n+1$ is a multiple of 4 .

