
MATH 21B, FEBRUARY 23: ORTHONORMAL BASES AND PROJECTION

De�nition: Let ~v, ~w ∈ Rn. Then we say ~v and ~w are orthogonal if the dot product

~v · ~w =
[
v1 · · · vn

] v1...
vn

 = v1w1 + . . .+ vnwn

is equal to 0. In general, the dot product of ~v and ~w is equal to |~v||~w| cos θ where θ is the angle
between ~v and ~w. The number cos θ is called the correlation coe�cient : when it is positive, the
vectors are positively correlated, when it is negative, the vectors are negatively correlated, and
when it is zero, the vectors are orthogonal. Note that ~v · ~v = |~v|2 has correlation coe�cient 1.

(1) Suppose that ~u1, . . . , ~um is a set of nonzero vectors in Rn such that each is orthogonal to all
of the others. Must they be linearly independent? How do you know?
Solution: ~u1, . . . , ~um must be linearly independent. Here's a nice trick to prove it.

Suppose that you have some linear relation among these vectors, i.e.

c1~u1 + c2~u2 + . . .+ cm~um = ~0

Take the dot product of both sides with one of the ~ui's.

c1(~u1 · ~ui) + c2(~u2 · ~ui) + . . .+ cm(~um · ~ui) = ~0 · ~ui = 0

Because ~u1, . . . , ~um are mutually orthogonal, every term except for one on the left hand side,
is equal to zero

ci(~ui · ~ui) = 0

Since ~ui · ~ui = |~ui|2 is nonzero, it follows that ci is equal to zero. We can use this argument
for i = 1, 2, . . . ,m to conclude that c1 = c2 = · · · = cm = 0.

We have shown that for any linear relation, we can show c1 = c2 = · · · = cm = 0. It
follows that there are no nontrivial linear relations, and therefore, the vectors are indepen-
dent.

De�nition: A set of vectors ~u1, . . . , ~um in V is called an orthonormal basis for V if
they form a basis for V , each has length 1, and each is orthogonal to all of the others.
Expressing this condition another way,

~ui · ~uj =

{
1 if i = j

0 if i 6= j

(2) Let V be a subspace of Rn. Any vector ~x in Rn can be written as ~x = projV (~x)+~x
⊥, where

projV (~x) is the orthogonal projection of ~x onto V , and ~x⊥ is orthogonal to V . Suppose that
we have an orthonormal basis (~u1, . . . , ~um) for V .
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(a) Explain why projV (~x) can be written as c1~u1 + . . .+ cm~um for some scalars c1, . . . , cm.

Solution: projV (~x) is the orthogonal projection of ~x onto V , and therefore lies in V .
Since ~u1, . . . , ~um form a basis for V , projV (~x) can be written as a linear combination
c1~u1 + . . .+ cm~um of these vectors.

(b) How do you calculate these coe�cients ci in terms of ~x and ~u1, . . . , ~um? (Hint: Take
the equation ~x = (c1~u1+ . . .+ cm~um)+~x⊥ and take the dot product of both sides with
~ui's.)

Solution: As suggested, we take the equation

~x = projV (~x) + ~x⊥ = (c1~u1 + . . .+ cm~um) + ~x⊥

and dot both sides with ~ui.

~ui · ~x = c1(~ui · ~u1) + c2(~ui · ~u2) + . . .+ cm(~ui · ~um)) + ~ui · ~x⊥

Since ~x⊥ is orthogonal to any vector in V , ~ui · ~x⊥ = 0. And since the basis is orthonor-
mal, we get the simpli�cation

~ui · ~x = c1(0) + c2(0) + . . .+ ci(1) + . . .+ cm(0) + 0 = ci

Therefore, for each i = 1, 2, . . . ,m, ~ui · ~x = ci .

(c) Use this to write a formula for projV (~x) in terms of ~x and our basis ~u1, . . . , ~um. At
what step did you require the basis to be orthonormal?

Solution: Since projV (~x) = c1~u1 + . . .+ cm~um, we have the formula

projV (~x) = (~u1 · ~x)~u1 + (~u2 · ~x)~u2 + . . .+ (~um · ~x)~um

(3) Let V be the plane 2x+ 2y + z = 0, ~u1 =

 1/3
−2/3
2/3

, and ~u2 =
−2/31/3

2/3

. Let ~x =

14
8

.
(a) Verify that (~u1, ~u2) is an orthonormal basis of V .

Solution: First, we need to verify that ~u1, ~u2 lie in the plane V .

2(1/3) + 2(−2/3) + 1(2/3) = 0 2(−2/3) + 2(1/3) + 1(2/3) = 0

Then we need to verify that ~u1, ~u2 both have length 1 and are orthogonal to each other.

~u1 · ~u1 = (1/3)2 + (−2/3)2 + (2/3)2 = 1/9 + 4/9 + 4/9 = 1

~u2 · ~u2 = (−2/3)2 + (1/3)2 + (2/3)2 = 4/9 + 1/9 + 4/9 = 1

~u1 · ~u2 = (1/3)(−2/3) + (−2/3)(1/3) + (2/3)(2/3) = −2/9− 2/9 + 4/9 = 0

(b) Find projV (~x). (Check that your answer is reasonable by computing the di�erence
~x− projV (~x). What should be true about this vector?)
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Solution: We use the formula from the previous question.

projV (~x) = (~u1 · ~x)~u1 + (~u2 · ~x)~u2 =

 1/3
−2/3
2/3

 ·
14
8

 1/3
−2/3
2/3

+

−2/31/3
2/3

 ·
14
8

−2/31/3
2/3


Straightforward computation gives ~u1 · ~x = 3 and ~u2 · ~x = 6. So

projV (~x) = 3

 1/3
−2/3
2/3

+ 6

−2/31/3
2/3

 =

−30
6



We check that this is reasonable by computing ~x⊥ = ~x− projV (~x) =

44
2

. This vector
is supposed to be orthogonal to V , and indeed, it's a multiple of the normal vector.

(4) Let V be an m-dimensional subspace of Rn. Consider the linear transformation projV :
Rn → Rn.
(a) What is im(projV )? What is its dimension?

Solution: The image of projection onto V is the subspace V (in Rn). By de�nition, it
has dimension m.

(b) What is ker(projV )? What is its dimension?
Solution: The kernel is the space of vectors whose projection onto V is zero. This is
the set of vectors orthogonal to V , called the orthogonal complement (denoted V ⊥). It
has dimension n−m.

(c) If you have a basis ~u1, . . . , ~um for V , how would you calculate ker(projV )?
Solution: A vector ~x is in V ⊥ if and only if ~u1 · ~x = · · · = ~um · ~x. That is, ~x is in V ⊥

if and only if ~u
T
1
...
~uTm

 ~x =

0...
0


where ~uTi just means the vector ~ui written as a row vector (so the above is a matrix

times vector equals vector equation). Therefore, V ⊥ is the kernel of the matrix

~u
T
1
...
~uTm


- we know how to compute kernels.
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(5) Suppose B = (~u1, ~u2, ~u3) is an orthonormal basis of R3. In each part of this problem,
you are given the B-matrix of a linear transformation T : R3 → R3. Describe the linear
transformation geometrically.

(a)

0 −1 0
1 0 0
0 0 1


Solution: This matrix sends ~u1 7→ ~u2,
~u2 7→ −~u1, and ~u3 7→ ~u3. So in the plane
de�ned by ~u1, ~u2, it is a rotation by π/2,
and it leaves the vector ~u3 �xed. There-
fore, it is rotation by π/2 around the line
〈~u3〉.

(b)

1 0 0
0 0 0
0 0 1


Solution: This matrix sends ~u1 7→ ~u1,
~u2 7→ ~0, and ~u3 7→ ~u3. Thus, it is projec-
tion onto the plane spanned by ~u1 and~u3.

If B were not orthonormal, how would your answers change?

Solution: A rotation has to preserve all lengths and angles, but if ~u1, ~u2 have di�erent
lengths, then (a) doesn't preserve lengths, and if ~u1, ~u2 are not orthogonal to each other,
then (a) doesn't preserve angles. Therefore, the description for (a) heavily depends on
orthonormality. For (b), it can still be described as projection onto the plane 〈~u1, ~u3〉
as long as ~u2 is orthogonal to 〈~u1, ~u3〉.

(6) Let ~v1 =


1
1
1
1

, ~v2 =


3
−1
−1
3

, ~v3 =


1
3
1
−1

; these three vectors are linearly independent. Let V

be the subspace of R4 spanned by ~v1, ~v2, ~v3. Find an orthonormal basis of V .

NOTE: this problem involves the Gram-Schmidt orthonormalization procedure, which
you do NOT need to know for the exam. We will talk about this in detail on Thursday
March 2.

Solution: In the Gram-Schmidt process, we �rst `turn ~v1 into a unit vector' by dividing
it by its length. That is, we let ~u1 =

1
||~v2||~v1. Here, ||~v1|| =

√
~v1 · ~v1 = 2, so

~u1 =


1/2
1/2
1/2
1/2


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Next, we want to get a vector ~v⊥2 in 〈~v1, ~v2〉 which is perpendicular to ~u1. We do this by
letting ~v⊥2 = ~v2 − proj〈~u1〉(~v2), or

~v⊥2 = ~v2 − (~u1 · ~v2)~u1 =


3
−1
−1
3

− 2


1/2
1/2
1/2
1/2

 =


2
−2
−2
2


(Note that ~v⊥2 is indeed orthogonal to ~u1.) We turn this into a unit vector by dividing by
its length.

~u2 =
1

||~v⊥2 ||
~v⊥2 =


1/2
−1/2
−1/2
1/2


Next, we want a vector ~v⊥3 in 〈~v1, ~v2, ~v3〉 which is orthogonal to ~u1, ~u2. We get this by
letting ~v⊥3 = ~v3 − proj〈~v1,~v2〉(~v3). To compute this projection, we need an orthonormal basis

of 〈~v1, ~v2〉, but we have one: ~u1, ~u2! So

~v⊥3 = ~v3 − (~u1 · ~v3)~u1 − (~u2 · ~v3)~u2 =


1
1
−1
−1


(It's easy to check at this point that ~v⊥3 is really orthogonal to ~u1 and ~u2.) Finally, we turn
~v⊥3 into a unit vector by dividing by its length

~u3 =
1

||~v⊥3 ||
~v⊥3 =


1/2
1/2
−1/2
−1/2


Thus, an orthonormal basis of V is

~u1 =


1/2
1/2
1/2
1/2

 , ~u2 =


1/2
−1/2
−1/2
1/2

 , ~u3 =


1/2
1/2
−1/2
−1/2


Check for yourself that this basis is orthonormal!
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