MATH 21B, FEBRUARY 23: ORTHONORMAL BASES AND PROJECTION

Definition: Let $\vec{v}, \vec{w} \in \mathbb{R}^{n}$. Then we say \vec{v} and \vec{w} are orthogonal if the dot product

$$
\vec{v} \cdot \vec{w}=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=v_{1} w_{1}+\ldots+v_{n} w_{n}
$$

is equal to 0 . In general, the dot product of \vec{v} and \vec{w} is equal to $|\vec{v}||\vec{w}| \cos \theta$ where θ is the angle between \vec{v} and \vec{w}. The number $\cos \theta$ is called the correlation coefficient: when it is positive, the vectors are positively correlated, when it is negative, the vectors are negatively correlated, and when it is zero, the vectors are orthogonal. Note that $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}$ has correlation coefficient 1 .
(1) Suppose that $\vec{u}_{1}, \ldots, \vec{u}_{m}$ is a set of vectors in \mathbb{R}^{n} such that each is orthogonal to all of the others. Must they be linearly independent? How do you know?

Definition: A set of vectors $\vec{u}_{1}, \ldots, \vec{u}_{m}$ in V is called an orthonormal basis for V if they form a basis for V, each has length 1 , and each is orthogonal to all of the others. Expressing this condition another way,

$$
\vec{u}_{i} \cdot \vec{u}_{j}=\left\{\begin{array}{lll}
1 & \text { if } \quad i=j \\
0 & \text { if } \quad i \neq j
\end{array}\right.
$$

(2) Let V be a subspace of \mathbb{R}^{n}. Any vector \vec{x} in \mathbb{R}^{n} can be written as $\vec{x}=\operatorname{proj}_{V}(\vec{x})+\vec{x} \perp$, where $\operatorname{proj}_{V}(\vec{x})$ is the orthogonal projection of \vec{x} onto V, and \vec{x}^{\perp} is orthogonal to V. Suppose that we have an orthonormal basis $\left(\vec{u}_{1}, \ldots, \vec{u}_{m}\right)$ for V.
(a) Explain why $\operatorname{proj}_{V}(\vec{x})$ can be written as $c_{1} \vec{u}_{1}+\ldots+c_{m} \vec{u}_{m}$ for some scalars c_{1}, \ldots, c_{m}.
(b) How do you calculate these coefficients c_{i} ? (Hint: Take the equation $\vec{x}=\left(c_{1} \vec{u}_{1}+\ldots+\right.$ $\left.c_{m} \vec{u}_{m}\right)+\vec{x}^{\perp}$ and take the dot product of both sides with \vec{u}_{i} 's.)
(c) Use this to write a formula for $\operatorname{proj}_{V}(\vec{x})$ in terms of \vec{x} and our basis $\vec{u}_{1}, \ldots, \vec{u}_{m}$. At what step did you require the basis to be orthonormal?
(3) Let V be the plane $2 x+2 y+z=0, \vec{u}_{1}=\left[\begin{array}{c}1 / 3 \\ -2 / 3 \\ 2 / 3\end{array}\right]$, and $\vec{u}_{2}=\left[\begin{array}{c}-2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right]$. Let $\vec{x}=\left[\begin{array}{l}1 \\ 4 \\ 8\end{array}\right]$.
(a) Verify that $\left(\vec{u}_{1}, \vec{u}_{2}\right)$ is an orthonormal basis of V.
(b) Find $\operatorname{proj}_{V}(\vec{x})$. (Check that your answer is reasonable by computing the difference $\vec{x}-\operatorname{proj}_{V}(\vec{x})$. What should be true about this vector?)
(4) Let V be an m-dimensional subspace of \mathbb{R}^{n}. Consider the linear transformation proj $_{V}$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(a) What is $\operatorname{im}\left(\operatorname{proj}_{V}\right)$? What is its dimension?
(b) What is $\operatorname{ker}\left(\operatorname{proj}_{V}\right)$? What is its dimension?
(c) If you have a basis $\vec{u}_{1}, \ldots, \vec{u}_{m}$ for V, how would you calculate $\operatorname{ker}\left(\operatorname{proj}_{V}\right)$?
(5) Suppose $\mathfrak{B}=\left(\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right)$ is an orthonormal basis of \mathbb{R}^{3}. In each part of this problem, you are given the \mathfrak{B}-matrix of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Describe the linear transformation geometrically.
(a) $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

If \mathfrak{B} were not orthonormal, how would your answers change?
(6) Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}3 \\ -1 \\ -1 \\ 3\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}1 \\ 3 \\ 1 \\ -1\end{array}\right]$; these three vectors are linearly independent. Let V be the subspace of \mathbb{R}^{4} spanned by $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. Find an orthonormal basis of V.

