Definition: A linear space is a set X with a commutative addition operation, + , satisfying three properties
(1) (Closed under addition) If x and y are elements of X, then $x+y$ is in X.
(2) (Closed under scalar multiplication) If x is in X and λ is a real number, then λx is in X.
(3) (Existence of an additive identity) There is an element $\mathbf{0}$ in X such that, for any x in $X, \mathbf{0}+x=x=x+\mathbf{0}$.
For example, any linear subspace of \mathbb{R}^{n} (including the zero subspace, and \mathbb{R}^{n} itself) is itself a linear space.
(1) Which of the following are linear spaces?
(a) The set of all 2×2 matrices.

Answer: Yes
(d) The set of all 2×2 matrices with lower left entry equal to 0 .
Answer: Yes
(e) The set of all polynomials of degree 3 or less such that $P(5)=3$.
(b) The set of all polynomials of degree 3 or less. (i.e., functions of the form $c_{3} x^{3}+$ $\left.c_{2} x^{2}+c_{1} x+c_{0}\right)$
Answer: Yes

Answer: No

(f) The set of all real-valued functions on the interval $[1,3]$.
(c) The set of all polynomials of degree 3 or less such that $P(5)=0$.
Answer: Yes
(g) The set of all continuous real-valued fun(h) tions on the interval $[1,3]$.
Answer: Yes

Answer: Yes

The set of all positive real-valued functions on the interval $[1,3]$.
Answer: No
(2) For each of the following linear spaces, give the dimension and find a basis (or say in a few words why it is impossible).
(a) The space \mathcal{P}_{3} of all polynomials of degree 3 or less.

Solution: $\left\{1, x, x^{2}, x^{3}\right\}$ is a basis for this space, because any polynomial of degree 3 or less can be expressed as a linear combination of these four monomials, and these four monomials are linearly independent (i.e., no nontrivial linear combination yields the zero polynomial). Therefore, \mathcal{P}_{3} has dimension 4. (Question: in general, if we replaced 'degree 3 ' by 'degree n ' for some number n, what would the dimension be? What if you let $n \rightarrow \infty$, i.e., considering the space of all polynomials?)
(b) The subspace V of \mathcal{P}_{3} consisting of all polynomials of degree 3 or less such that $P(5)=0$. Solution 1: Any polynomial P such that $P(5)=0$ (i.e. with 5 as a root) must be divisible by $x-5$. Therefore, $P(x)=(x-5) Q(x)$ for some polynomial Q. Since P has degree 3 or less, Q has degree 2 or less, i.e. $Q(x)=c_{2} x^{2}+c_{1} x+c_{0}$ for some constants c_{2}, c_{1}, c_{0}. So V has a basis given by the polynomials $\left\{x-5, x^{2}-5 x, x^{3}-5 x^{2}\right\}$, and has dimension 3 .

Solution 2: Any polynomial P of degree 3 or less can be written in the form

$$
P(x)=a_{3}(x-5)^{3}+a_{2}(x-5)^{2}+a_{1}(x-5)+a_{0}
$$

for some constants $a_{3}, a_{2}, a_{1}, a_{0}$. That is, $\left\{(x-5)^{3},(x-5)^{2},(x-5), 1\right\}$ is a perfectly good basis for \mathcal{P}_{3}. The subspace V of polynomials P such that $P(5)=0$, is the span of the first three of these basis vectors (and therefore has dimension 3).
(c) The space $\mathcal{C}_{[1,3]}$ of continuous functions on $[1,3]$.

Solution: This is an infinite dimensional space! Here's a short explanation of why (the following is not something you need to know now, but these ideas will appear towards the end of the course and I think it's an interesting extension of what we have been doing). Remember that we say a space has dimension n if it has a basis of size n : i.e., a set of elements $\left\{v_{1}, \ldots, v_{n}\right\}$ which are linearly independent and span the space. So we'll show that $\mathcal{C}_{[1,3]}$ contains an infinite sequence of elements $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ which are linearly independent. There are lots and lots of such infinite sequences, here are two examples:

$$
\begin{gathered}
\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}, \ldots\right\} \\
\{\sin (x), \sin (2 x), \sin (3 x), \sin (4 x), \sin (5 x), \sin (6 x)\}
\end{gathered}
$$

The first sequence, for example, form a linearly independent set, because if there were some linear relation between the powers of x, that would mean we have a nontrivial polynomial $P(x)$ (i.e. not the zero polynomial) which is equal to zero on the entire interval [1,3]. That would mean every number in $[1,3]$ is a root of $P(x)$, and therefore $P(x)$ has infinitely many roots! That's not possible for a finite-degree polynomial! Therefore, we can't have such a nontrivial relation P. (From the point of view of Math 1 b - if $P(x)$ is equal to zero on the interval $[1,3]$, then let's Taylor approximate it
around $x=2$: all of its derivatives at $x=2$ are zero, and therefore its Taylor series would just be 0 .)
(d) The space of 2×3 matrices A such that $A\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Solution: This is a subspace of the 6 -dimensional space of 2×3 matrices. Let's suppose that A is some matrix such that $A\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, and let's see what we can figure out about A. Write

$$
A=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23}
\end{array}\right]
$$

First, the equation $A\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is equivalent to the following two equations:

$$
\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=[0] \quad\left[\begin{array}{lll}
x_{21} & x_{22} & x_{23}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=[0]
$$

That is, the two vectors $\left[\begin{array}{l}x_{11} \\ x_{12} \\ x_{13}\end{array}\right]$ and $\left[\begin{array}{l}x_{21} \\ x_{22} \\ x_{23}\end{array}\right]$ are both orthogonal to $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$. In other words, these two vectors (which are the two rows of A) lie in the plane orthogonal to $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.

We know how to find a basis for this plane, which is described by the equation $x+y+$ $2 z=0$. It's done by finding the kernel of the matrix $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$. You've done this on your homework, so I'll just say what the basis is

$$
\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right\}
$$

So each of $\left[\begin{array}{l}x_{11} \\ x_{12} \\ x_{13}\end{array}\right]$ and $\left[\begin{array}{l}x_{21} \\ x_{22} \\ x_{23}\end{array}\right]$ is a linear combination of these two vectors. Therefore, the space of 2×3 matrices A such that $A\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has basis

$$
\left\{\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 1
\end{array}\right]\right\}
$$

that is, it is 4-dimensional.
(e) The space of 2×3 matrices A such that $A\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Solution: Again, let $A=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23}\end{array}\right]$, then the given matrix equation is equivalent to the four equations

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13}
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=[0] \quad\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=[0]} \\
& {\left[\begin{array}{lll}
x_{21} & x_{22} & x_{23}
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=[0] \quad\left[\begin{array}{lll}
x_{21} & x_{22} & x_{23}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=[0]}
\end{aligned}
$$

In other words, each row of A is orthogonal to both $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. The set of vectors orthogonal to both of these, is just the kernel of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$. I think this was also on the last homework: the kernel is spanned by $\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$. Therefore, the space of 2×3 matrices A such that $A\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has basis

$$
\left\{\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -2 & 1
\end{array}\right]\right\}
$$

(3) Find a matrix A such that the image of the matrix $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right]$ coincides with the kernel of the matrix A.
Solution: We want a matrix whose kernel is $\left\langle\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\rangle$. As we saw in the previous part, $A=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]$ fits the bill.

