Definition: A linear space is a set X with a commutative addition operation, + , satisfying three properties
(1) (Closed under addition) If x and y are elements of X, then $x+y$ is in X.
(2) (Closed under scalar multiplication) If x is in X and λ is a real number, then λx is in X.
(3) (Existence of an additive identity) There is an element $\mathbf{0}$ in X such that, for any x in $X, \mathbf{0}+x=x=x+\mathbf{0}$.
For example, any linear subspace of \mathbb{R}^{n} (including the zero subspace, and \mathbb{R}^{n} itself) is itself a linear space.
(1) Which of the following are linear spaces?
(a) The set of all 2×2 matrices.
(d) The set of all 2×2 matrices with lower left entry equal to 0 .
(e) The set of all polynomials of degree 3 or less such that $P(5)=3$.
(b) The set of all polynomials of degree 3 or less. (i.e., functions of the form $c_{3} x^{3}+$ $\left.c_{2} x^{2}+c_{1} x+c_{0}\right)$
(f) The set of all real-valued functions on the interval [1,3].
(c) The set of all polynomials of degree 3 or less such that $P(5)=0$.
(g) The set of all continuous real-valued fun(h) The set of all positive real-valued functions tions on the interval $[1,3]$. on the interval $[1,3]$.
(2) For each of the following linear spaces, give the dimension and find a basis (or say in a few words why it is impossible).
(a) The space of all polynomials of degree 3 or less.
(b) The space of all polynomials of degree 3 or less such that $P(5)=0$.
(c) The space of continuous functions on $[1,3]$.
(d) The space of 2×3 matrices A such that $A\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(e) The space of 2×3 matrices A such that $A\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
(3) Find a matrix A such that the image of the matrix $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 2\end{array}\right]$ coincides with the kernel of the matrix A.

