MATH 21B, FEBRUARY 16: CHANGE OF BASIS

Definition: Let $\mathcal{B}=\left(\vec{v}_{1}, \ldots, \vec{v}_{n}\right)$ be a basis for \mathbb{R}^{n}. Then for any $\vec{x} \in \mathbb{R}^{n}$, if $\vec{x}=c_{1} \vec{v}_{1}+\ldots+$ $c_{n} \vec{v}_{n}$, we say the c_{i} 's are the \mathcal{B}-coordinates of \vec{x}, and define

$$
[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

The \mathcal{B}-coordinates of \vec{x} can be obtained by solving the system $S\left([\vec{x}]_{\mathcal{B}}\right)=\vec{x}$, where S is the matrix whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{n}$. The answer has the formula

$$
[\vec{x}]_{\mathcal{B}}=S^{-1}(\vec{x})
$$

(1) Find the \mathcal{B}-coordinates of \vec{x}, or explain why it cannot be done.
(a) $S=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & 5 \\ -2 & 0 & -3\end{array}\right], \vec{x}=\left[\begin{array}{c}0 \\ 10 \\ -9\end{array}\right]$
(b) $S=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right], \vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(c) $S=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$
(2) Let V be the plane $x+y-z=0$ in \mathbb{R}^{3}. Find a basis for \mathbb{R}^{3} in which every vector of V has the form $\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$.

Definition: Let A be any $n \times n$ matrix. Then the \mathcal{B}-matrix of A is the matrix which tells us what A does to vectors in \mathcal{B}-coordinates. It is given by the formula

$$
B=S^{-1} A S
$$

One says that B is similar to A.
(3) Let V be the plane $x+y-z=0$ in \mathbb{R}^{3}. We are going to write down A, the 3×3 matrix for projection onto V.
(a) What is a sensible basis to use as coordinates? (Write down a basis for \mathbb{R}^{3} where we can easily write the projection of each basis element onto V.) Call the matrix associated to this basis S.
(b) Write down the matrix $B=S^{-1} A S$ for projection onto V in this basis.
(c) Now use this to write down the matrix A for projection onto V in the standard basis $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$. (Hint: if $B=S^{-1} A S$, then how do you get A back from B ?)
(4) In this problem, we will write down the matrix A for counterclockwise rotation by θ around the line L in \mathbb{R}^{3} spanned by the vector $\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. (i.e., if you point your thumb of your right hand in the direction of the vector, then the direction that your fingers curl is the direction the rotation will go.)
(a) Find a sensible basis \mathcal{B} for this problem. (Hint: start with a basis for the plane perpendicular to this line.)
(b) If \vec{x} has \mathcal{B}-coordinates $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$, then what are the \mathcal{B}-coordinates after we rotate it by θ around L ? Write down the matrix which performs this transformation in \mathcal{B}-coordinates. (Hint: what are the \mathcal{B}-coordinates of L, the line we're rotating around?)
(c) Use this to find the matrix A in the standard coordinates which rotates around the line L.

