
MATH 21B, FEBRUARY 14: BASIS, LINEAR INDEPENDENCE, AND

DIMENSION

De�nition: A sequence of vectors ~v1, . . . , ~vm is called linearly independent if there are no

nontrivial linear relations

a1~v1 + . . .+ am~vm = 0

unless a1 = a2 = · · · = am = 0.

De�nition: A subset V of Rn is said to be a linear subspace if:
• 0 ∈ V .
• ~v + ~w ∈ V whenever ~v, ~w ∈ V . (Closed under addition)
• λ~v ∈ V whenever ~v ∈ V and λ is a real number. (Closed under scalar multiplication)
De�nition: Let V be a linear subspace of Rn. A set of vectors ~v1, . . . , ~vm is a basis of V

if they span V and are linearly independent. In this case, every vector of V can be expressed
uniquely as a linear combination of ~v1, . . . , ~vm.

(1) Which of the following sets of vectors are linear subspaces?

(a) The union of the x- and y-axes in R2.
No: not closed under addition.

(b) The kernel of a matrix.
Yes.

(c) The image of a matrix.
Yes.

(d) The plane x+ 2y − z = 2 in R3.

No: doesn't contain ~0.

(e) The span of a collection of vectors in Rn.
Yes.

(f) The set x > 0 in R2 (called the upper

half plane).

No: doesn't contain ~0 and not

closed under scaling.

(2) Which of the following sequences of vectors are linearly independent?

(a)

[
1
3

]
,

[
3
9

]
No: 3

[
1
3

]
−
[
3
9

]
=

[
0
0

] (b)

12
0

 ,
12
3

 ,
00
1


No:

12
0

−
12
3

+ 2

00
1

 =

00
0


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(c)

10
0

 ,
01
0

 ,
00
1

 ,
 2

3
−1


No: 2

10
0

+ 3

01
0

− 1

00
1

 =

 2
3
−1


(d)

11
0

 ,
01
1

 ,
10
1


Yes. In particular, they span R3.

(3) Consider the matrix A =


1 0 2
3 1 7
1 2 4
−1 7 5


(a) Compute rref(A), and use this to compute ker(A).

Solution: By standard row reduction,

rref(A) =


1 0 2
0 1 1
0 0 0
0 0 0


The kernel of this matrix is the same as the kernel of A, because row operations just cor-
respond to adding and scaling equations. Finding the kernel of this matrix corresponds
to solving the equations x1+2x3 = 0 and x2+x3 = 0. x3 is the free variable, and x1, x2
are the leading variables whose values are −2x3 and −x3, respectively. Therefore,

ker(rref(A)) =


−2t−t

t

 : t ∈ R



(b) Write a basis for ker(A).
Solution: There is only one free variable, so ker(A) has only one basis vector, namely−2−1

1

.
(c) Write im(A) as the span of a collection of vectors.

Solution: The image of A is just the span of the columns, because the columns are
the images of ~e1, ~e2, ~e2. Thus,

im(A) =

〈
1
3
1
−1

 ,

0
1
2
7

 ,

2
7
4
5


〉
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(d) Are these vectors linearly independent? If not, can you write down a linear relation?
(Hint: use the kernel!)

Solution: No, they are not. We know that since

−2−1
1

 is in the kernel, that A

−2−1
1

 =
0
0
0
0

. This tells us that

−2


1
3
1
−1

−

0
1
2
7

+


2
7
4
5

 =


0
0
0
0



(e) Write down a basis for im(A).
Solution: Any two of the three vectors above form a basis for im(A). For example,

1
3
1
−1

 ,

0
1
2
7

 is a basis.

General steps to �nd a basis for ker(A):
(a) Row reduce A to get rref(A). Clearly, rref(A) has the same kernel as A.
(b) Decide which are the free variables and which are the leading variables. Let's call the

free variables t1, . . . , ts (where s is the nullity).
(c) For each of the free variables, set it equal to 1 and all of the other free variables equal

to 0. This will determine the values of the leading variables, and will thus give you a
vector.

(d) Do this for all s free variables, and you get s vectors. These vectors form a basis for
the kernel.

General steps to �nd a basis for im(A):
(a) Row reduce A to get rref(A). (rref(A) does not have the same image as A!)
(b) Decide which are the free variables and which are the leading variables. Each leading

variable corresponds to a column.
(c) For each leading variable, take the corresponding column of A. These vectors form a

basis for the image.
Why does this second algorithm work? This is best demonstrated through an example - I
will use 4(b) to show this.
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(4) For each of the following matrices, calculate a basis for its kernel and image. (Since you
know how to row-reduce, I have included rref(A) for each matrix.)

(a) A =

1 0 1 4
1 1 0 3
0 1 1 5

, rref(A) =
1 0 0 1
0 1 0 2
0 0 1 3


Solution: The �rst three columns are leading, and the last column is free. I've used
the colors red and blue to show this. For the kernel: let's set the free variable x4 to be
equal to 1. The three equations corresponding to the rows tell us that x1 = −1, x2 =

−2, x3 = −3. Therefore, the kernel has one basis vector,


−1
−2
−3
1

. For the image: we

take the �rst three rows of A, so the image has basis

11
0

 ,
01
1

 ,
10
1

.

(b) A =


1 1 3 −1
−1 −1 −2 3
1 1 3 0
1 1 2 −1

, rref(A) =

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Solution: For the kernel: set the free variable x2 to be 1 to get x1 = −1, x3 = 0, x4 =

0. Therefore, the kernel has one basis vector,


−1
1
0
0

. The image has basis given by

the column vectors


1
−1
1
1

 ,


3
−2
3
2

 ,

−1
3
0
−1

. Now, I owe you an explanation of why this

method for the image works. Focus on the �rst, third, and fourth columns of the
matrices above. The row reduction does the following.


1 3 −1
−1 −2 3
1 3 0
1 2 −1

→

1 0 0
0 1 0
0 0 1
0 0 0



Clearly, the matrix on the right has kernel equal to {~0} (i.e., trivial kernel), because
it is just the identity matrix with a row of zeroes at the bottom (in general, if you
just select the leading columns of rref(A) and make a matrix out of those, you'll get
the identity matrix plus some rows of zeroes at the bottom). Therefore, the matrix on
the left has trivial kernel as well (because they have the same kernel). A matrix with
trivial kernel has linearly independent columns (this is essentially just by de�nition).
Therefore, the matrix on the left, formed by the leading columns of A, has linearly
independent columns.
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(c) A =

 1 −1 −1
1 1 5
−2 0 −3

, rref(A) =
1 0 0
0 1 0
0 0 1


Solution: There are no free variables, so ker(A) = {~0} has no basis. The image has
basis equal to all three columns - in particular, this means the image is R3, and so we
could also say it has basis ~e1, ~e2, ~e3.

(5) True or false: if A is a 5 × 4 matrix with columns ~v1, ~v2, ~v3, ~v4, and if


1
2
3
4

 ∈ ker(A), then

~v1 + 2~v2 + 3~v3 + 4~v4 = ~0.
Solution: True! Check for yourself that the following matrix times vector equation holds

[
~v1 ~v2 ~v3 ~v4

] 
1
2
3
4

 = ~v1 + 2~v2 + 3~v3 + 4~v4

where the matrix on the left is the 5 × 4 matrix A whose columns are ~v1, ~v2, ~v3, ~v4. (It is
essentially because A~ei = ~vi for i = 1, 2, 3, 4.)

De�nition: If V ⊂ Rn is a linear subspace, then it has a basis ~v1, . . . , ~vm, and the
size m of the basis is independent of which basis we pick. We call this number m the
dimension of V . In particular, if V is spanned by n vectors, then its dimension is at
most n.

For any matrix A, we call the dimension of im(A) the rank, and we call the dimension
of ker(A) the nullity. The rank equals the number of leading variables, and the nullity
equals the number of free variables. Thus, we have the rank-nullity theorem, which
states that rank + nullity = number of columns.

(6) True or false?

(a) If A is a 4× 3 matrix and A~x = ~0 has no nonzero solutions, then the columns of A are
linearly independent.
Solution: True. In general, for any matrix A, A~x = ~0 has no solutions if and only if
the columns of A are linearly independent.

(b) If A is a 4×3 matrix and A~x = ~0 has no nonzero solutions, then A~x = ~e1 has a solution.
Solution: False. For example, consider

A =


0 0 0
1 0 0
0 1 0
0 0 1


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This matrix has linearly independent columns, so its columns span a 3-dimensional
linear subspace of R4, but in this case, that subspace does not contain ~e1.

(c) There is a 3× 6 matrix whose kernel is two-dimensional.
Solution: False. The columns of a 3 × 6 matrix live in R3, and thus the rank is at
most 3. Since rank + nullity = 6, the nullity is at least 3. (In other words: there are
six variables, and at most three of them are leading, therefore at least three are free
variables and so the kernel has dimension at least 3.)

(d) If A is a 3 × 5 matrix whose kernel is two-dimensional, then A~x =

13
5

 has a unique

solution.
Solution: False. Rank + nullity = 5, so the rank is 3. Therefore, the image is all

of R3, and so A~x =

13
5

 does have a solution. However, this solution is not unique,

because if ~x is one solution, and ~v is any element of ker(A), then A(~x+ ~v) =

13
5

.
(e) There exists a 5× 4 matrix whose image is R5.

Solution: False. The image of a 5× 4 vector has dimension 4 or smaller - but R5 has
dimension 5.
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