MATH 21B, FEBRUARY 14: BASIS, LINEAR INDEPENDENCE, AND DIMENSION

Definition: A sequence of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ is called linearly independent if there are no nontrivial linear relations

$$
a_{1} \vec{v}_{1}+\ldots+a_{m} \vec{v}_{m}=0
$$

unless $a_{1}=a_{2}=\cdots=a_{m}=0$.

Definition: A subset V of \mathbb{R}^{n} is said to be a linear subspace if:

- $0 \in V$.
- $\vec{v}+\vec{w} \in V$ whenever $\vec{v}, \vec{w} \in V$.
- $\lambda \vec{v} \in V$ whenever $\vec{v} \in V$ and λ is a real number.

Definition: Let V be a linear subspace of \mathbb{R}^{n}. A set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ is a basis of V if they span V and are linearly independent. In this case, every vector of V can be expressed uniquely as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{m}$.
(1) Which of the following sets of vectors are linear subspaces?
(a) The union of the x - and y-axes in \mathbb{R}^{2}.
(d) The plane $x+2 y-z=2$ in \mathbb{R}^{3}.
(b) The kernel of a matrix.
(e) The span of a collection of vectors in \mathbb{R}^{n}.
(c) The image of a matrix.
(f) The set $x>0$ in \mathbb{R}^{2} (called the upper half plane).
(2) Which of the following sequences of vectors are linearly independent?
(a) $\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 9\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
(3) Consider the matrix $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & 7 \\ 1 & 2 & 4 \\ -1 & 7 & 5\end{array}\right]$
(a) Compute $\operatorname{rref}(A)$, and use this to compute $\operatorname{ker}(A)$.
(b) Write a basis for $\operatorname{ker}(A)$.
(c) Write $\operatorname{im}(A)$ as the span of a collection of vectors.
(d) Are these vectors linearly independent? If not, can you write down a linear relation? (Hint: use the kernel!)
(e) Write down a basis for $\operatorname{im}(A)$.
(4) For each of the following matrices, calculate a basis for its kernel and image. (Since you know how to row-reduce, I have included $\operatorname{rref}(A)$ for each matrix.)
(a) $A=\left[\begin{array}{llll}1 & 0 & 1 & 4 \\ 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 5\end{array}\right], \operatorname{rref}(A)=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]$
(b) $A=\left[\begin{array}{cccc}1 & 1 & 3 & -1 \\ -1 & -1 & -2 & 3 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 2 & -1\end{array}\right], \operatorname{rref}(A)=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & 5 \\ -2 & 0 & -3\end{array}\right], \operatorname{rref}(A)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(5) True or false: if A is a 5×4 matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$, and if $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \in \operatorname{ker}(A)$, then $\vec{v}_{1}+2 \vec{v}_{2}+3 \vec{v}_{3}+4 \vec{v}_{4}=\overrightarrow{0}$.

Definition: If $V \subset \mathbb{R}^{n}$ is a linear subspace, then it has a basis $\vec{v}_{1}, \ldots, \vec{v}_{m}$, and the size m of the basis is independent of which basis we pick. We call this number m the dimension of V. In particular, if V is spanned by n vectors, then its dimension is at most n.

For any matrix A, we call the dimension of $\operatorname{im}(A)$ the rank, and we call the dimension of $\operatorname{ker}(A)$ the nullity. The rank equals the number of leading variables, and the nullity equals the number of free variables. Thus, we have the rank-nullity theorem, which states that rank + nullity $=$ number of columns.
(6) True or false?
(a) If A is a 4×3 matrix and $A \vec{x}=\overrightarrow{0}$ has no nonzero solutions, then the columns of A are linearly independent.
(b) If A is a 4×3 matrix and $A \vec{x}=\overrightarrow{0}$ has no nonzero solutions, then $A \vec{x}=\vec{e}_{1}$ has a solution.
(c) There is a 3×6 matrix whose kernel is two-dimensional.
(d) If A is a 3×5 matrix whose kernel is two-dimensional, then $A \vec{x}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$ has a unique solution.
(e) There exists a 5×4 matrix whose image is \mathbb{R}^{5}.

