Given an $n \times p$ matrix A, and a $p \times m$ matrix B, we define the matrix product $A \cdot B$ as follows. If B has column vectors

$$
B=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{m}
\end{array}\right]
$$

then $A \cdot B$ (or just $A B$) is the $n \times m$ matrix

$$
A B=\left[\begin{array}{llll}
A \vec{v}_{1} & A \vec{v}_{2} & \cdots & A \vec{v}_{m}
\end{array}\right]
$$

A represents a linear transformation $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, and B represents a linear transformation $\mathbb{R}^{m} \rightarrow$ $\mathbb{R}^{p} ; A \cdot B$ represents the composition, which is a linear transformation $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Recall that the $n \times n$ matrix with 1's along the diagonal and 0's everywhere else is called the identity matrix, and is denoted I_{n}.

Suppose that A is an $n \times n$ matrix such that for every vector $\vec{y} \in \mathbb{R}^{n}$, there is exactly one vector $\vec{x} \in \mathbb{R}^{n}$ such that $A \vec{x}=\vec{y}$. Then A has an inverse matrix, denoted A^{-1}, such that

$$
A \vec{x}=\vec{y} \Longleftrightarrow \vec{x}=A^{-1} \vec{y}
$$

(1) In this problem, we will invert the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$.
(a) Show that $\operatorname{rref}(A)=I_{2}$.

Solution: Standard row reduction. See part (b) for the reduction.
(b) Row-reduce the augmented matrix $\left[A \mid I_{2}\right]=\left[\begin{array}{ll:ll}3 & 2 & 1 & 0 \\ 7 & 5 & 0 & 1\end{array}\right]$ to get $\left[I_{2} \mid A^{-1}\right]$.

Solution:

$$
\left.\left.\begin{array}{l}
\qquad\left[\begin{array}{ll:ll}
3 & 2 & 1 & 0 \\
7 & 5 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc:cc}
1 & 2 / 3 & 1 / 3 & 0 \\
7 & 5 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc:c}
1 & 2 / 3 & 1 / 3 \\
0 & 1 / 3 & -7 / 3
\end{array}\right]
\end{array}\right]\right) \rightarrow\left[\begin{array}{cc:cc}
1 & 0 & 5 & -2 \\
0 & 1 & -7 & 3
\end{array}\right] .
$$

(c) What is $A \cdot A^{-1}$? What about $A^{-1} \cdot A$?

Solution: Simply multiplying matrices, we find $A A^{-1}=I_{2}$, and also $A^{-1} A=I_{2}$. These properties are an alternative way to defined the inverse A^{-1} of the matrix A.
(2) Recall that the matrix for a counterclockwise rotation by θ in \mathbb{R}^{2} is $A_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. How do you know this matrix is invertible? What is its inverse?

Solution: The inverse to this matrix should be rotation clockwise by θ, i.e., rotation by $-\theta$. Therefore, its matrix is

$$
A_{-\theta}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

(3) In worksheet $4 \# 2(\mathrm{~b})$, you found the matrix A for projection onto the line $y=3 x$ was $A=\frac{1}{10}\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$. Does this matrix have an inverse? How do you know?

Solution: No, this matrix has no inverse. In order for a function from one set to another to have an inverse, it must be one-to-one (no two inputs give the same output) and onto (every element of the range is in the output). In the case of the linear transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, it is not one-to-one: every point on the line $y=-\frac{1}{3} x$ is sent to the same output, $(0,0)$. Therefore, A cannot have an inverse.
(4) If $n \times n$ matrices A and B are invertible, what about $A B$? If so, give its inverse.

Solution: Yes, $(A B)^{-1}=B^{-1} \cdot A^{-1}$. This can be easily verified by checking what happens when we multiply this matrix by $A B$.

$$
\begin{aligned}
& A B\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I_{2} A^{-1}=A A^{-1}=I_{2} \\
& \left(B^{-1} A^{-1}\right) A B=B^{-1}\left(A^{-1} A\right) B=B^{-1} I_{2} B=B^{-1} B=I_{2}
\end{aligned}
$$

(5) Is the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ invertible?

No, it is not, because rref $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$, but in order for a 3×3 matrix to be invertible, its reduced row echelon form must be I_{3} (i.e., have 3 leading ones).

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation. The kernel of T is the set of vectors $\vec{x} \in \mathbb{R}^{m}$ such that

$$
T(\vec{x})=\overrightarrow{0}
$$

The image of T is the set of vector $\vec{y} \in \mathbb{R}^{n}$ for which there exists some $\vec{x} \in \mathbb{R}^{m}$ with

$$
T(\vec{x})=\vec{y}
$$

Note that the kernel lives in the domain, while the image lives in the range. The span of a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ is the set of all vectors which can be written as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{m}$, and is denoted

$$
\left\langle\vec{v}_{1}, \ldots, \vec{v}_{m}\right\rangle
$$

Note that for any matrix A, each of the column vectors of A is in the image (because these are the images of $\vec{e}_{1}, \vec{e}_{2}, \ldots$ It follows that the image of A is given by all linear combinations of the column vectors - i.e., it is the span of the column vectors.
(6) For each of the following matrices, compute the kernel and image.
(a) $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$

Solution: The image is the span $\left\langle\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 9\end{array}\right]\right\rangle$. Since $\left[\begin{array}{l}3 \\ 9\end{array}\right]$ is a multiple of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$, the second vector is redundant, and so the image just equals the span $\left\langle\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\rangle$.
We get the kernel by finding the general solution to

$$
\left[\begin{array}{ll}
1 & 3 \\
3 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The general solution is $\left[\begin{array}{c}-3 t \\ t\end{array}\right]$ where $t \in \mathbb{R}$. Another way to write this is as the span $\left\langle\left[\begin{array}{c}-3 \\ 1\end{array}\right]\right\rangle$.
(b) $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$

Solution: The image is generated by the columns, and is thus equal to $\left\langle\left[\begin{array}{l}3 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\rangle$. Note that since

$$
\begin{aligned}
& 5\left[\begin{array}{l}
3 \\
7
\end{array}\right]-7\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\vec{e}_{1} \\
& -2\left[\begin{array}{l}
3 \\
7
\end{array}\right]+3\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\vec{e}_{2}
\end{aligned}
$$

it follows that this span contains \vec{e}_{1} and \vec{e}_{2} and therefore is all of \mathbb{R}^{2}. For the kernel, just like last time, we solve the equation $\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right] \vec{x}=\overrightarrow{0}$, and find that the only solution is $\overrightarrow{0}$, so the kernel is $\{\overrightarrow{0}\}$.
(c) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

Solution: The image is the span of the column vectors. To determine which columns are redundant, we perform row-reduction

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

The columns with leading ones correspond to the columns which generate the image of our original matrix A - i.e., the first two columns.

$$
\operatorname{im}(A)=\left\langle\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]\right\rangle=\left\{c_{1}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]: c_{1}, c_{2} \in \mathbb{R}\right\}
$$

To calculate the kernel, we solve the system $A \vec{x}=\overrightarrow{0}$. Using row-reduction, we get

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and so $x_{1}=x_{3}, x_{2}=-2 x_{3}$. Thus, the general solution is

$$
\operatorname{ker}(A)=\left\{\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]: t \in \mathbb{R}\right\}=\left\langle\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right\rangle
$$

(d) $A=\left[\begin{array}{cc}2 & 1 \\ 4 & 2 \\ -2 & -1\end{array}\right]$

Solution: Row-reduce.

$$
\left[\begin{array}{cc}
2 & 1 \\
4 & 2 \\
-2 & -1
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Since only the first column has a leading 1 , it follows that the first column of A spans the image (indeed, you can see that the second column is a multiple of the first). So

$$
\operatorname{im}(A)=\left\langle\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]\right\rangle
$$

The kernel of A equals the kernel of $\operatorname{rref}(A)$ (as we have done in the previous problems), which is the set of vectors $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ with $x_{1}+(1 / 2) x_{2}=0$. Therefore

$$
\operatorname{ker}(A)=\left\langle\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right]\right\rangle
$$

(7) If L is a line in \mathbb{R}^{n} and A is the $n \times n$ matrix for orthogonal projection onto L, then what are the image and kernel of A ?

Solution: A sends each vector in \mathbb{R}^{n} to a point on L, so $\operatorname{im}(A)$ is a subset of L. The points on L are all kept fixed, and so every point of L is $\operatorname{in} \operatorname{im}(A)$. Therefore, $\operatorname{im}(A)=L$. The kernel is the set of vectors whose projection onto L is the zero vector: these are the vectors lying on the ($n-1$)-dimensional hyperplane perpendicular to L.

Explicitly in coordinates: if L is spanned by some vector $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$, then $\operatorname{im}(A)$ is the span of this vector, and $\operatorname{ker}(A)$ is the hyperplane

$$
\left\{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]: a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=0\right\}
$$

(8) Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
(a) Use Gauss-Jordan elimination to write the set of all \vec{y} such that $A \vec{y}=\left[\begin{array}{c}6 \\ 15 \\ 24\end{array}\right]$.

Solution: Standard row-reduction of the augmented matrix.

$$
\left[\begin{array}{lll:c}
1 & 2 & 3 & 6 \\
4 & 5 & 6 & 15 \\
7 & 8 & 9 & 24
\end{array}\right] \rightarrow\left[\begin{array}{ccc:c}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so $x_{1}-x_{3}=0 \Longrightarrow x_{1}=x_{3}$ and $x_{2}+2 x_{3}=3 \Longrightarrow x_{2}=-2 x_{3}+3$ which gives the general solution

$$
\left\{\left[\begin{array}{c}
t \\
-2 t+3 \\
t
\end{array}\right]\right\}=\left\{t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]\right\}
$$

(b) If \vec{y} and \vec{z} are two such vectors, what can you say about $A(\vec{y}-\vec{z})$?

Solution: If \vec{y} and \vec{z} are two such vectors, then clearly $\vec{y}-\vec{z}$ is a multiple of $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$, i.e. the difference lies in the kernel, so $A(\vec{y}-\vec{z})=\overrightarrow{0}$. (In general, if \vec{y} is any solution to the original equation, we can add any element of the kernel to \vec{y} to get another solution.)

