
MATH 21B, FEBRUARY 9: MATRIX INVERSION, IMAGE, KERNEL, AND

RANK

Given an n×p matrix A, and a p×m matrix B, we de�ne the matrix product A ·B as follows.
If B has column vectors

B =
[
~v1 ~v2 · · · ~vm

]
then A ·B (or just AB) is the n×m matrix

AB =
[
A~v1 A~v2 · · · A~vm

]
A represents a linear transformation Rp → Rn, and B represents a linear transformation Rm →
Rp; A ·B represents the composition, which is a linear transformation Rm → Rn. Recall that the
n × n matrix with 1's along the diagonal and 0's everywhere else is called the identity matrix,
and is denoted In.

Suppose that A is an n × n matrix such that for every vector ~y ∈ Rn, there is exactly one

vector ~x ∈ Rn such that A~x = ~y. Then A has an inverse matrix, denoted A−1, such that

A~x = ~y ⇐⇒ ~x = A−1~y

(1) In this problem, we will invert the matrix A =

[
3 2
7 5

]
.

(a) Show that rref(A) = I2.
Solution: Standard row reduction. See part (b) for the reduction.

(b) Row-reduce the augmented matrix [A|I2] =
[
3 2 1 0
7 5 0 1

]
to get [I2|A−1].

Solution:[
3 2 1 0
7 5 0 1

]
→
[
1 2/3 1/3 0
7 5 0 1

]
→
[
1 2/3 1/3 0
0 1/3 −7/3 1

]

→
[
1 0 5 −2
0 1/3 −7/3 1

]
→
[
1 0 5 −2
0 1 −7 3

]
so A−1 =

[
5 −2
−7 3

]
.

(c) What is A ·A−1? What about A−1 ·A?
Solution: Simply multiplying matrices, we �nd AA−1 = I2, and also A−1A = I2.
These properties are an alternative way to de�ned the inverse A−1 of the matrix A.
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(2) Recall that the matrix for a counterclockwise rotation by θ in R2 is Aθ =

[
cos θ − sin θ
sin θ cos θ

]
.

How do you know this matrix is invertible? What is its inverse?

Solution: The inverse to this matrix should be rotation clockwise by θ, i.e., rotation by
−θ. Therefore, its matrix is

A−θ =

[
cos θ sin θ
− sin θ cos θ

]

(3) In worksheet 4 #2(b), you found the matrix A for projection onto the line y = 3x was

A = 1
10

[
1 3
3 9

]
. Does this matrix have an inverse? How do you know?

Solution: No, this matrix has no inverse. In order for a function from one set to another
to have an inverse, it must be one-to-one (no two inputs give the same output) and onto

(every element of the range is in the output). In the case of the linear transformation
A : R2 → R2, it is not one-to-one: every point on the line y = −1

3x is sent to the same
output, (0, 0). Therefore, A cannot have an inverse.

(4) If n× n matrices A and B are invertible, what about AB? If so, give its inverse.

Solution: Yes, (AB)−1 = B−1 · A−1. This can be easily veri�ed by checking what
happens when we multiply this matrix by AB.

AB(B−1A−1) = A(BB−1)A−1 = AI2A
−1 = AA−1 = I2

(B−1A−1)AB = B−1(A−1A)B = B−1I2B = B−1B = I2

(5) Is the matrix

1 2 3
4 5 6
7 8 9

 invertible?

No, it is not, because rref

1 2 3
4 5 6
7 8 9

 =

1 0 −1
0 1 2
0 0 0

, but in order for a 3 × 3 matrix to

be invertible, its reduced row echelon form must be I3 (i.e., have 3 leading ones).
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Let T : Rm → Rn be a linear transformation. The kernel of T is the set of vectors
~x ∈ Rm such that

T (~x) = ~0

The image of T is the set of vector ~y ∈ Rn for which there exists some ~x ∈ Rm with

T (~x) = ~y

Note that the kernel lives in the domain, while the image lives in the range. The span

of a set of vectors ~v1, . . . , ~vm is the set of all vectors which can be written as a linear
combination of ~v1, . . . , ~vm, and is denoted

〈~v1, . . . , ~vm〉

Note that for any matrix A, each of the column vectors of A is in the image (because these
are the images of ~e1, ~e2, . . .. It follows that the image of A is given by all linear combinations

of the column vectors - i.e., it is the span of the column vectors.
(6) For each of the following matrices, compute the kernel and image.

(a) A =

[
1 3
3 9

]

Solution: The image is the span 〈
[
1
3

]
,

[
3
9

]
〉. Since

[
3
9

]
is a multiple of

[
1
3

]
, the second

vector is redundant, and so the image just equals the span 〈
[
1
3

]
〉.

We get the kernel by �nding the general solution to[
1 3
3 9

] [
x1
x2

]
=

[
0
0

]

The general solution is

[
−3t
t

]
where t ∈ R. Another way to write this is as the span

〈
[
−3
1

]
〉.

(b) A =

[
3 2
7 5

]

Solution: The image is generated by the columns, and is thus equal to 〈
[
3
7

]
,

[
2
5

]
〉.

Note that since

5

[
3
7

]
− 7

[
2
5

]
=

[
1
0

]
= ~e1

−2
[
3
7

]
+ 3

[
2
5

]
=

[
0
1

]
= ~e2
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it follows that this span contains ~e1 and ~e2 and therefore is all of R2. For the kernel,

just like last time, we solve the equation

[
3 2
7 5

]
~x = ~0, and �nd that the only solution

is ~0, so the kernel is {~0}.

(c) A =

1 2 3
4 5 6
7 8 9


Solution: The image is the span of the column vectors. To determine which columns

are redundant, we perform row-reduction1 2 3
4 5 6
7 8 9

 rref→

1 0 −1
0 1 2
0 0 0


The columns with leading ones correspond to the columns which generate the image of
our original matrix A - i.e., the �rst two columns.

im(A) =

〈14
7

 ,
25
8

〉 =

c1
14
7

+ c2

25
8

 : c1, c2 ∈ R


To calculate the kernel, we solve the system A~x = ~0. Using row-reduction, we get1 0 −1

0 1 2
0 0 0

x1x2
x3

 =

00
0


and so x1 = x3, x2 = −2x3. Thus, the general solution is

ker(A) =


 t
−2t
t

 : t ∈ R

 =

〈 1
−2
1

〉

(d) A =

 2 1
4 2
−2 −1


Solution: Row-reduce.  2 1

4 2
−2 −1

 rref→

1 1/2
0 0
0 0


Since only the �rst column has a leading 1, it follows that the �rst column of A spans
the image (indeed, you can see that the second column is a multiple of the �rst). So

im(A) =

〈 2
4
−2

〉
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The kernel of A equals the kernel of rref(A) (as we have done in the previous problems),

which is the set of vectors

[
x1
x2

]
with x1 + (1/2)x2 = 0. Therefore

ker(A) =

〈[
−1/2
1

]〉

(7) If L is a line in Rn and A is the n× n matrix for orthogonal projection onto L, then what
are the image and kernel of A?

Solution: A sends each vector in Rn to a point on L, so im(A) is a subset of L. The
points on L are all kept �xed, and so every point of L is in im(A). Therefore, im(A) = L.
The kernel is the set of vectors whose projection onto L is the zero vector: these are the
vectors lying on the (n− 1)-dimensional hyperplane perpendicular to L.

Explicitly in coordinates: if L is spanned by some vector

a1...
an

, then im(A) is the span

of this vector, and ker(A) is the hyperplane
x1...
xn

 : a1x1 + a2x2 + . . .+ anxn = 0



(8) Consider the matrix A =

1 2 3
4 5 6
7 8 9

.
(a) Use Gauss-Jordan elimination to write the set of all ~y such that A~y =

 6
15
24

.
Solution: Standard row-reduction of the augmented matrix. 1 2 3 6

4 5 6 15
7 8 9 24

→
 1 0 −1 0

0 1 2 3
0 0 0 0


so x1 − x3 = 0 =⇒ x1 = x3 and x2 + 2x3 = 3 =⇒ x2 = −2x3 + 3 which gives the
general solution 

 t
−2t+ 3

t

 =

t
 1
−2
1

+

03
0


(b) If ~y and ~z are two such vectors, what can you say about A(~y − ~z)?
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Solution: If ~y and ~z are two such vectors, then clearly ~y−~z is a multiple of

 1
−2
1

, i.e.
the di�erence lies in the kernel, so A(~y− ~z) = ~0. (In general, if ~y is any solution to the
original equation, we can add any element of the kernel to ~y to get another solution.)
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