Given an $n \times p$ matrix A, and a $p \times m$ matrix B, we define the matrix product $A \cdot B$ as follows. If B has column vectors

$$
B=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{m}
\end{array}\right]
$$

then $A \cdot B$ (or just $A B$) is the $n \times m$ matrix

$$
A B=\left[\begin{array}{llll}
A \vec{v}_{1} & A \vec{v}_{2} & \cdots & A \vec{v}_{m}
\end{array}\right]
$$

A represents a linear transformation $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, and B represents a linear transformation $\mathbb{R}^{m} \rightarrow$ $\mathbb{R}^{p} ; A \cdot B$ represents the composition, which is a linear transformation $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. Recall that the $n \times n$ matrix with 1's along the diagonal and 0's everywhere else is called the identity matrix, and is denoted I_{n}.

Suppose that A is an $n \times n$ matrix such that for every vector $\vec{y} \in \mathbb{R}^{n}$, there is exactly one vector $\vec{x} \in \mathbb{R}^{n}$ such that $A \vec{x}=\vec{y}$. Then A has an inverse matrix, denoted A^{-1}, such that

$$
A \vec{x}=\vec{y} \Longleftrightarrow \vec{x}=A^{-1} \vec{y}
$$

(1) In this problem, we will invert the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$.
(a) Show that $\operatorname{rref}(A)=I_{2}$.
(b) Row-reduce the augmented matrix $\left[A \mid I_{2}\right]=\left[\begin{array}{ll:ll}3 & 2 & 1 & 0 \\ 7 & 5 & 0 & 1\end{array}\right]$ to get $\left[I_{2} \mid A^{-1}\right]$.
(c) What is $A \cdot A^{-1}$? What about $A^{-1} \cdot A$?
(2) Recall that the matrix for a counterclockwise rotation by θ in \mathbb{R}^{2} is $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. How do you know this matrix is invertible? What is its inverse?
(3) In worksheet $4 \# 2(\mathrm{~b})$, you found the matrix A for projection onto the line $y=3 x$ was $A=\frac{1}{10}\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$. Does this matrix have an inverse? How do you know?
(4) If $n \times n$ matrices A and B are invertible, what about $A B$? If so, give its inverse.
(5) Is the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ invertible?

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a linear transformation. The kernel of T is the set of vectors $\vec{x} \in \mathbb{R}^{m}$ such that

$$
T(\vec{x})=\overrightarrow{0}
$$

The image of T is the set of vector $\vec{y} \in \mathbb{R}^{n}$ for which there exists some $\vec{x} \in \mathbb{R}^{m}$ with

$$
T(\vec{x})=\vec{y}
$$

The span of a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ is the set of all vectors which can be written as a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{m}$, and is denoted

$$
\left\langle\vec{v}_{1}, \ldots, \vec{v}_{m}\right\rangle
$$

(6) For each of the following matrices, compute the kernel and image.
(a) $\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
(d) $\left[\begin{array}{cc}2 & 1 \\ 4 & 2 \\ -2 & -1\end{array}\right]$
(7) If L is a line in \mathbb{R}^{n} and A is the $n \times n$ matrix for orthogonal projection onto L, then what are the image and kernel of A ?
(8) Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
(a) Use Gauss-Jordan elimination to write the set of all \vec{y} such that $A \vec{y}=\left[\begin{array}{c}6 \\ 15 \\ 24\end{array}\right]$.
(b) If \vec{y} and \vec{z} are two such vectors, what can you say about $A(\vec{y}-\vec{z})$?

