
MATH 21B, FEBRUARY 7: ROTATIONS, REFLECTIONS, DILATIONS,

PROJECTIONS, AND SHEARS

(1) Consider the vectors ~e1 and ~e2 in R2.
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In each part below, you are given a matrix A. Draw what happens to the vectors ~e1 and
~e2 after applying the linear transformation T (~x) = A~x. Describe the e�ect of the linear
transformation in words.

(a) A =

[
2 0
0 1

]
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This is a dilation by a factor of 2 along
the x-axis.

(b) A =

[
1 −1
0 1

]
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This is a horizontal shear.
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(c) A =

[
1 0
0 −1

]
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This is a re�ection over the x-axis. (This
is equivalently a dilation by a factor of
−1 along the y-axis.)

(d) A =

[
1 −1
1 1

]
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This is a rotation counterclockwise by
45◦, followed by a dilation by

√
2.

(e) A =

[
1/2 1/2
1/2 1/2

]
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This is a projection onto the line y = x.
(This is equivalently a dilation of factor
0 along the line y = −x.)

(f) A =

[
2 0
0 −1

]
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This is a dilation by a factor of 2 along
the x-axis composed with a re�ection
over the x-axis.

(2) For each of the following linear transformations from R2 to R2, write down its matrix.
(a) Rotation counterclockwise by an angle θ around the origin. (Where does this transfor-

mation send the vectors

[
1
0

]
and

[
0
1

]
?)
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Solution: The �rst column of this matrix will be the vector that e1 is sent to. This is,

by de�nition, the point

[
cos θ
sin θ

]
. Similarly, we can see that rotating e2 counterclockwise

by θ gives the point

[
cos(θ + π/2)
sin(θ + π/2)

]
=

[
− sin θ
cos θ

]
.

x

y

θ

θ + π
2

(cos θ, sin θ)

(− sin θ, cos θ)

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Therefore, the desired matrix is

A =

[
cos θ − sin θ
sin θ cos θ

]

(b) Orthogonal projection onto the line y = 3x.
Solution 1:
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Instead of calculating the projections of e1 and e2, we calculate the projections of some
easier vectors. We know that any vector on the line y = 3x (drawn in blue) must get
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sent to itself: therefore, A

[
1
3

]
=

[
1
3

]
. We also know that any vector orthogonal to the

line (drawn in red) gets sent to zero: therefore, A

[
3
−1

]
=

[
0
0

]
.

We can now use these values to obtain the value of A at e1 and e2, because

e1 =
1

10

[
1
3

]
+

3

10

[
3
−1

]
=⇒ Ae1 =

1

10

[
1
3

]

e1 =
3

10

[
1
3

]
− 1

10

[
3
−1

]
=⇒ Ae1 =

3

10

[
1
3

]

and therefore, A =

[
1/10 3/10
3/10 9/10

]
.

Note: In the language of matrix multiplication, which is introduced later in this work-
sheet, we �rst obtained the matrix equation

A

[
1 3
3 −1

]
=

[
1 0
3 0

]
We will later see that the system of linear equations we solved was equivalent to �nding

the inverse of the matrix

[
1 3
3 −1

]
.

Solution 2: We want to calculate the projections of the vectors e1, e2 onto this line.
We can do so using the dot product. Recall that if v and w are two vectors, then the
projection of v onto the line de�ned by w is calculated by the expression

projw(v) =
(v · w)w
|w|2

In our particular case, the line is de�ned by the vector w =

[
1
3

]
, so

projw (e1) =
w

|w2|
=

[
1/10
3/10

]

projw (e2) =
3w

|w2|
=

[
3/10
9/10

]
and therefore, the desired matrix is

A =

[
1/10 3/10
3/10 9/10

]

(c) Orthogonal projection onto the line y = 3x, followed by dilation by a factor of 2 (i.e.
double the length of all vectors).
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Solution: The images of e1 and e2 under this transformation should be double their

images under

[
1/10 3/10
3/10 9/10

]
. Therefore, the images are

[
1/5
3/5

]
and

[
3/5
9/5

]
, and so the

required matrix is

A =

[
1/5 3/5
3/5 9/5

]

N ote: In the language of matrix multiplication: dilation by a factor of 2 is given by

the matrix

[
2 0
0 2

]
, so the desired composition is given by[
2 0
0 2

] [
1/10 3/10
3/10 9/10

]
=

[
1/5 3/5
3/5 9/5

]
Note that in a composition of matrices, the matrix on the right is applied �rst! (This
is similar to composition of functions.)

Given an n× p matrix A, and a p×m matrix B, we de�ne the matrix product A ·B
as follows. If B has column vectors

B =
[
~v1 ~v2 · · · ~vm

]
then A ·B (or just AB) is the n×m matrix

AB =
[
A~v1 A~v2 · · · A~vm

]
A represents a linear transformation Rp → Rn, and B represents a linear transformation
Rm → Rp; A ·B represents the composition, which is a linear transformation Rm → Rn.

(3) Let A =

[
−2 3
1 2

]
and B =

[
4 7
5 1

]
. Find AB and BA (if they make sense).

Solution: A and B are both 2 × 2 matrices, so we can multiply them in either order.
However, AB and BA are di�erent: i.e., matrix multiplication is not commutative.

AB =

[
−2 3
1 2

] [
4 7
5 1

]
=

[
−2(4) + 3(5) −2(7) + 3(1)
1(4) + 2(5) 1(7) + 2(1)

]
=

[
7 −11
14 9

]
BA =

[
4 7
5 1

] [
−2 3
1 2

]
=

[
4(−2) + 7(1) 4(3) + 7(2)
5(−2) + 1(1) 5(3) + 1(2)

]
=

[
−1 26
−9 17

]

(4) Let A =

 1 4
−3 1
0 0

 and B =
[
0 2 1

]
. Find AB and BA (if they make sense).

Solution: AB does not makes sense, because we can't multiply a 3× 2 matrix by a 1× 3
matrix - but BA does make sense, as we can multiply a 1× 3 matrix by a 3× 2 matrix.

BA =
[
0 2 1

]  1 4
−3 1
0 0

 =
[
(0(1) + 2(−3) + 1(0)) (0(4) + 2(1) + 1(0))

]
=
[
−6 2

]
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Another way to view it is that we have a map R1 A→ R3 and a map R3 B→ R1, and it only
makes sense if we compose these in the order B ◦A.

(5) Let A =
[
1 2

]
and B =

[
3
4

]
. Find AB and BA (if they make sense).

Solution: Both products make sense, but they are di�erent sizes!

AB =
[
1 2

] [3
4

]
= [1(3) + 2(4)] = 11

BA =

[
3
4

] [
1 2

]
=

[
3(1) 3(2)
4(1) 4(2)

]
=

[
3 6
4 8

]
Notice here that the matrix product of a row vector with a column vector is just the dot

product in disguise. Its output is a 1×1 matrix, which is just a scalar transformation R→ R
- i.e., a number.

(6) For any n, let In denote the matrix with 1's along the main diagonal and zeroes everywhere
else: this is called the identity matrix. If A is an n ×m matrix, what is InA? How about
AIm?

Solution: InA is (n × n) · (n ×m) = (n ×m) - careful checking yields that this is the
matrix A. Similarly, AIm is (n×m) · (m×m) = (n×m) and this multiplication also yields
the matrix A. Another way to see this is that the matrix In is just the identity map from
Rn → Rn, because if you look at its columns (a few examples given below), it is de�ned by
the fact that Ine1 = e1, Ine2 = e2, . . . , Inen = en.

I1 = [1] I2 =

[
1 0
0 1

]
I3 =

1 0 0
0 1 0
0 0 1

 I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 · · ·

(7) In 2(b), you found the matrix A for projection onto the line y = 3x. What is A2?

Solution:

A2 = A ·A =
1

100

[
1 3
3 9

] [
1 3
3 9

]
=

1

100

[
10 30
30 90

]
=

1

10

[
1 3
3 9

]
= A

Geometrically, this makes sense: after you project onto a line, if you do so again, it does
nothing. That is, projections are idempotent.
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