(1) Consider the vectors \vec{e}_{1} and \vec{e}_{2} in \mathbb{R}^{2}.

In each part below, you are given a matrix A. Draw what happens to the vectors \vec{e}_{1} and \vec{e}_{2} after applying the linear transformation $T(\vec{x})=A \vec{x}$. Describe the effect of the linear transformation in words.
(a) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$

(c) $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

(e) $A=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$

(d) $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$

(f) $A=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$

(2) For each of the following linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2}, write down its matrix.
(a) Rotation counterclockwise by an angle θ around the origin. (Where does this transformation send the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$?)
(b) Orthogonal projection onto the line $y=3 x$.
(c) Orthogonal projection onto the line $y=3 x$, followed by dilation by a factor of 2 (i.e. double the length of all vectors).

Given an $n \times p$ matrix A, and a $p \times m$ matrix B, we define the matrix product $A \cdot B$ as follows. If B has column vectors

$$
B=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{m}
\end{array}\right]
$$

then $A \cdot B$ (or just $A B$) is the $n \times m$ matrix

$$
A B=\left[\begin{array}{llll}
A \vec{v}_{1} & A \vec{v}_{2} & \cdots & A \vec{v}_{m}
\end{array}\right]
$$

A represents a linear transformation $\mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, and B represents a linear transformation $\mathbb{R}^{m} \rightarrow \mathbb{R}^{p} ; A \cdot B$ represents the composition, which is a linear transformation $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
(3) Let $A=\left[\begin{array}{cc}-2 & 3 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 7 \\ 5 & 1\end{array}\right]$. Find $A B$ and $B A$ (if they make sense).
(4) Let $A=\left[\begin{array}{cc}1 & 4 \\ -3 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]$. Find $A B$ and $B A$ (if they make sense).
(5) Let $A=\left[\begin{array}{ll}1 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Find $A B$ and $B A$ (if they make sense).
(6) For any n, let I_{n} denote the matrix with 1's along the main diagonal and zeroes everywhere else: this is called the identity matrix. If A is an $n \times m$ matrix, what is $I_{n} A$? How about $A I_{m}$?
(7) In 2(b), you found the matrix A for projection onto the line $y=3 x$. What is A^{2} ?

