MATH 21B, FEBRUARY 2: LINEAR TRANSFORMATIONS

A linear transformation is a mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfying two properties:
(1) $T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$ for any $\vec{x}, \vec{y} \in \mathbb{R}^{n}$.
(2) $T(c \vec{x})=C \cdot T(\vec{x})$ for any $\vec{x} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}$

An $m \times n$ matrix A defines a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ via the matrix product:

$$
\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n} x_{n}
\end{array}\right]
$$

or, more succinctly, $A \vec{x}=\vec{b}$.
(1) In each of the following decide whether the given function is a linear transformation. (Added challenge: if it is linear, can you find a matrix which describes it?)
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{x})=3 \vec{x}$
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{x})=\vec{x}+\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(c) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=[x y z]$.
(d) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ 2 x_{1}-x_{2}\end{array}\right]$.
(e) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ defined by $T(\vec{x})=\overrightarrow{0}$.
(f) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{x})=$ the vector obtained by rotating \vec{x} by 90° counterclockwise around the origin.
(2) Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and all you know about it is that $T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 5\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
(a) Can you compute $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$? If so, find it; if not, explain why not.
(b) Can you compute $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$? If so, find it; if not, explain why not.
(c) Can you write down a matrix that describes T ?
(3) Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and all you know about it is that $T\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
(a) Can you compute $T\left(\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\right)$? If so, find it; if not, explain why not.
(b) Can you compute $T\left(\left[\begin{array}{l}1 \\ 2 \\ 7\end{array}\right]\right)$? If so, find it; if not, explain why not.

